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Abstract

The occurrence of extreme observations in a time series depends on the heaviness of the tails of its distribu-

tion. The paper proposes a dynamic conditional score model (DCS) for modelling dynamic shape parameters

that govern the tail index. The model is based on the Generalised t family of conditional distributions. The

framework is extended to allow also for the presence of asymmetric tails and therefore the possibility of

specifying different dynamics for the left and right tail indices. The Paper examines through simulations

both the convergence properties of the model and the implications of the link functions used. In addition the

paper introduces and studies the size and power properties of a new Lagrange Multiplier (LM) test based on

fitted scores to detect the presence of dynamics in the tail index parameter. The paper also shows that the

novel LM test is more effective than existing testing methodologies. The model is fitted to Equity Indices

and Credit Default Swaps returns. It is found that the tail index for equities has dynamics driven mainly

by either the upper or lower tail depending if leverage is taken or not into account. In the case of Credit

Default Swaps the test identifieses very persistent dynamics for both the tails. Finally the implications of

dynamic tail indices for the estimated conditional distribution are assessed in terms of conditional distribu-

tion forecasting showing that the novel model predicts more accurately expected shortfalls and value-at-risk

than existing models.
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1. Introduction

The analysis of time series is focused on identifying the time varying features of the underlying data

generating process. It has been empirically shown that unconditional distributions of market returns are

heavy tailed with evidence of volatility clustering and long memory. These features can be partly explained

if the second moment of the conditional distribution of the data is time-varying. However this is still not

sufficient to explain how the occurrence of extreme events can vary over time. It is important to accurately

take into account the potential variations of the tails’ lengths when forecasting probability distributions of

financial returns, particularly if this is done for the purpose of minimizing portfolio risks and monitoring the

stability of financial markets.

The occurrence of extreme events in financial data is described by the tail risk. The main contribution

of this paper is to show how to accurately identify and capture the dynamic variations over time in the tails

of time series distributions, which are distinct from scale variations. Moreover, the paper introduces a new

dynamic model which is able to separate the dynamics of the upper tail from that of the lower tail.

Given the difficulties in modelling the tails of a distribution, testing for the presence of dynamics before

attempting to model them is necessary in order to avoid spurious results. For this reason the paper also

introduces a new formal test to detect the presence of tail dynamics.

The concept of tail risk can be decomposed into two elements, the variation over time in the overall

heaviness of the tails of the distribution and the relative difference in size between the upper and lower tails,

defined as asymmetry. Figures 1 and 2 show the estimated scale, σ, the estimated degrees of freedom, η,

from fitting a static symmetric t distribution to the Dow Jones Index returns, and the estimated left and

right tail degrees of freedom parameters, η1 and η2, from the static asymmetric t distribution (AST) of

Zhu and Galbraith (2010)1. Estimates are obtained using moving windows with 500 and 1000 observations

respectively. If the degrees of freedom exceeds 40 we assume that they approach infinity and the fitted

distribution approximates a normal distribution. As expected, the scale varies over time, which is consistent

with the findings on volatility clustering of financial data. At the same time the degrees of freedom seems

also to be time varying. Moreover, in the asymmetric case, the relative magnitude and variation of the two

degree of freedom parameters tend to differ, with periods where the lower tail is heavier than the upper tail

and vice versa. On doubling the window size the magnitude of variation in the degrees of freedom decreases

but large movements can still be detected.

These variations in the tail index parameters of the two tails, and in their relative asymmetry, implies

time variations of the higher moments of the distribution. Various observation driven models have been

proposed to model directly higher moments of the conditional distribution of the data, focusing particularly

on skewness to describe asymmetry, as in Harvey and Siddique (1999), and kurtosis for the heaviness of

1The degrees of freedom parameter η are a proxy for the tail index as defined by the CDF decomposition F̄Y (y) = cL (y) y−η ,

where F̄Y is the survival function, c is a non-negative constant and L (y) a slowly varying function such that limk−>∞
L(ky)
L(y)

=

1. A lower tail index implies longer and fatter tails, and a higher occurrence of extreme events. A distribution with a given
tail index η it has only k < η finite moments.
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Figure 1: Plot of estimates for static scale (Bottom) and degrees of freedom (Top) with a 500 observations moving
window. The top figure shows symmetric degrees of freedom η (Blue), asymmetric left tail degrees of freedom η1
(Red) and asymmetric right tail degrees of freedom η2 (Black). The estimated degrees of freedom are only reported
if lower than 40.

the tails, as in Brooks et al. (2005). However, as highlighted by Hansen (1994), in order to have valid

quasi-Maximum Likelihood properties while modelling conditional moments it is necessary to have tighter

restrictions on even higher conditional moments2. These conditions can be difficult to be satisfied empirically.

Moreover, the moments modelled need always to exist3. For these reasons Hansen (1994) suggested that the

solution should be to model directly shape parameters of the conditional densities and outlined a general

framework to do so using an ARCH type of dynamics.

Another approach for measuring tail variations is through extreme value theory. As described by Em-

brechts et al. (1997), this theory approximates the unconditional distribution of random variables at the

lower and upper tails. Through this approximation it is possible to focus directly on the distribution of

the observations in the tails beyond a given threshold which can be approximated by a Generalised Pareto

Distribution or linked to the tail index parameter through a power law. Starting from this theory, Quintos

et al. (2001) build formal tests to detect structural breaks in the tail index of the unconditional distribution

of data which Werner and Upper (2004) and Galbraith and Zernov (2004) used to analyse German bonds

futures’ returns and U.S. equity returns respectively. In this framework, the occurrence of extreme events

can be modelled giving dynamics directly to the tail index parameter, as in Wagner (2005). However, given

that the estimation of the parameters of the model depends only on the observations that occur beyond a

given threshold, it is necessary to have long time series to describe accurately its dynamics. The problem

2For example, following the seminal paper of Lee and Hansen (1994), the GARCH(1,1) model requires the fourth moment of
the conditional distribution to exist and to be finite.

3For example if the variability in the data is too extreme the tail index might be so low up to the point of not being able to
guarantee the existence of skewness and kurtosis as well as variance (as for example in the case of a Cauchy distribution).
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Figure 2: Plot of estimates for static scale (Bottom) and degrees of freedom (Top) with a 500 observations moving
window. The top figure shows symmetric degrees of freedom η (Blue), asymmetric left tail degrees of freedom η1
(Red) and asymmetric right tail degrees of freedom η2 (Black). The estimated degrees of freedom are only reported
if lower than 40.

with this approach is that4 the parameters governing the dynamics of the tail, as well as other time varying

features, might not be stable over such a long time period. To overcome this issue, while looking at the tail

risk in equity indexes, Allen et al. (2012), Kelly (2014) and Kelly and Jiang (2014) developed a dynamic

power law model which focuses instead on both the time series and the cross-sectional dimensions of the

available data exploiting the information from all the stocks traded on an index.

To model the tail index, the present paper suggests instead the use of models from the recent score-driven

literature developed by Creal et al. (2013) and Harvey (2013). The motivation comes from the fact that

score-driven models, besides allowing for a wider choice of conditional distributions for the data, focus on

providing a dynamics directly to the parameters of the conditional distribution rather than to their moments.

The score that drives the dynamics is a continuous function of the observations with an adaptive response

which gives higher weights to observations at the extreme of the distribution than to the ones close to the

median. An earlier example of a score-driven framework used for modelling the tail index parameter can be

found in Lucas and Zhang (2016), which developed an Exponentially Weighted Moving Average (EWMA)

model for the tail index assuming a strongly persistent time varying behaviour. Blazsek and Monteros (2017)

considered a Dynamic Conditional Score (DCS) model for the degrees of freedom of a t distribution fitted

to equity returns.

The main issue with all the aforementioned dynamic tail index models is that, to our knowledge, no

simulation study has been made on the effectiveness of these models in picking up the true tail index

dynamics as well as on the most effective specification for the score update function5. Moreover, no specific

4As proven for example for the dynamics of the second moments in GARCH-type of models by Lamoureux and Lastrapes
(2002) and Engle and Mustafa (1992).

5For example weather to standardise or not the score by the information matrix in the dynamic equation.
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formal tool has been introduced in a dynamic setting to assess the actual presence of a dynamic tail index

and to justify the use of these models.

Building on this literature, the present work focuses on modelling a dynamic tail index in the DCS frame-

work assuming a distribution of the Generalised t family used by Harvey and Lange (2017).The distribution

has a separate parameter to define the shape of its tails and can be further generalised to include another

parameter to describe its skewness. The paper studies empirically the convergence properties of the odel

given different average values of the tail index parameter. In addition, a new test is introduced to detect if

the tail index parameter is dynamic. The methodology is based on the Lagrange Multiplier (LM) test, which

has been introduced in score-driven models by Harvey (2013) and Harvey and Thiele (2016) in the context

of time-varying correlation. Our test focuses on the residual correlation of the fitted scores with respect

to the shape parameter of the conditional distribution of the data under the null of static dynamics. This

test differs from the one of Quintos et al. (2001) since it focuses on the conditional distribution of the data.

Other types of LM tests for general parameters instabilities and structural breaks in the DCS framework

have been considered by Calvori et al. (2017). However, given that our test takes explicitly into account

of the cross-correlation between the scores with respect to the scale and tail index parameters under the

alternative of being dynamic, the present study shows that overall our LM test has higher power in detecting

dynamics of tail index parameters. We also provide a power and size comparison with a simple version of

the LM test based on the Box-Ljung test.

The final contribution of the paper is to extended the Generalised t conditional distribution to its skewed

asymmetric version to include a different independent time-varying tail parameter for each of the tails. The

reason for this is that in the presence of asymmetric data a symmetric model would incorrectly estimate the

quantiles of the conditional distribution somewhere in between the two tails, most likely underestimating

the thickness of the heavier tail. On the other hand an asymmetric model would more accurately estimate

the thickness of each tail separately and this can be used to describe the time variation in the asymmetry of

the distribution. The idea of this dynamic asymmetry in a score-driven framework has only been considered

previously in two cases: in a static tails framework by Thiele (2020), which models a dynamic scale in

presence of an AST distribution of Zhu and Galbraith (2010), and by Massacci (2017) who, following the

extreme value theory approach, proposes a time varying tail index model for modelling directly the tails of the

conditional distribution of the data assuming they are conditionally Laplace distributed. To our knowledge,

the present study is the first work which introduces an adaptive model for modelling the asymmetry of the

full conditional distribution of the data through modelling independently its two tail index parameters.

Finally the paper verifies the empirical relevance of both the symmetric and asymmetric specifications

in the modelling of market returns of Equity Index and Credit Default Swap (CDS) rates. The analysis

shows that the tail movements in the Equity Index are not particularly persistent and are driven only by

the movements either of the lower tail or upper tail depending if leverage is taken into account or not. On

the other hand for the CDS both the tails are independently time-varying with very persistent movements.

The impact of the tail variations on density forecasts is also assessed on these datasets in terms of fitted

quantiles and testing the accuracy of both models in predicting Expected Shortfalls.
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The paper is structured as follows: Section 2 introduces the theory behind the statistical framework of

the model presented. Section 3 presents the theory behind a formal test for detecting time variability of the

tail index parameters, which is then analysed through simulations and compared with other relevant tests in

the literature. In Section 4 the statistical framework is extended as to introduce asymmetric tails. Section 5

presents the results from fitting the dynamic tail score-driven models to equity index and CDS returns as

well as analysing out-of-sample the quantiles of the forecasted conditional distributions in comparison with

standard models.

2. Statistical Framework: DCS Dynamic Tail Index Model

The current study is based on the idea of modelling data series assuming dynamic scale and shape

parameters through a DCS model with a conditional distribution from the Generalised t distribution’s

family, as described in Harvey and Lange (2017). The Generalised t distribution is a location and scale

general distribution which is described by the following density

ft (εt) = K (η, υ)

(
1 +
|εt|υ

η

)− (η+1)
υ

η, υ > 0 and −∞ < εt <∞

K (η, υ) =
υ

2η1/2
1

B (1/υ, η/υ)

Where B (., .) is a beta function, εt = (yt − µ) /ϕ are the residuals, η and υ are both shape parameters and

η governs the tail index for η > 0. The Generalised t distribution is a very flexible distribution which can

accommodate many sub distributions as special cases according to different values of η and υ. It can have

fat tails for υ > 1 and heavy but not fat tails for 0 < υ < 1. For υ = 2 it becomes a t distribution with η

degrees of freedom. Then for η → ∞ it becomes a GED (υ) distribution which then becomes Laplace for

υ = 1 and normal for υ = 2. Harvey and Lange (2017) shows how to model the scale ϕ in a DCS framework

with an exponential link function ϕt|t−1 = eλt|t−1 deriving the score and its information matrix with respect

to the dynamic scale parameter λt|t−1.

∂ ln ft
∂λ

= (η + 1) bt − 1, Iλλ =
ηυ

υ + η + 1
, t = 1, . . . , T

where bt = |εt|υ/η
|εt|υ/η+1 is distributed as a Beta

(
1
υ ,

η
υ

)
. The dynamics of the scale parameter λt|t−1 is then

described by uλt = ∂ ln ft
∂λ I

−1
λλ . Their paper provides the asymptotic normality results for the estimators. This

model is then easily extendible to include a dynamic location parameter6.

In the present study dynamics for both the conditional scale, ϕt|t−1, and the tail index parameter, ηt|t−1,

are assumed. As with the scale parameter, to restrict ηt|t−1 to be strictly positive it is possible to model

it using an affine exponential link function of the form η = η† + eηsϑ, where η† is, as in Lucas and Zhang

(2016), a lower-bound for the tail index parameter. This can be used to restrict the parameter to be greater

6Harvey (2013) described extensively how to set up a DCS model with dynamic Location and Scale parameters when the
conditional distribution allows the two parameters to be independently specified.
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Figure 3: The figure provide the plot of the raw score with respect to ϑ (Left and Middle) and with respect to λ
(Right) against different residuals values εt, for υ = 2 and η = 2 (Blue), η = 6 (Black), η = 10 (Red).

than two for example and guarantee the existence of the variance of the conditional distribution. ηs is a

fixed parameter that allows us to either model directly η, if ηs = 1, or its inverse η̄ = 1/η, if ηs = −17, which

is often usefull to use in the derivation of the analytical tresults of the Generalised t DCS model8. Then the

conditional score, as well as its information matrix, with respect to ϑ can be obtained as

∂ ln ft
∂ϑ

= ηs

(
ηt|t−1 − η†

)
υ

[
ψ

(
ηt|t−1 + 1

υ

)
− ψ

(ηt|t−1
υ

)
+ ln (1− bt) +

1

ηt|t−1

∂ ln ft
∂λ

]
(1)

Iϑϑ =η2s

(
ηt|t−1 − η†

υ

)2 [
ψ′
(ηt|t−1

υ

)
− ψ′

(
ηt|t−1 + 1

υ

)
−

υ
(
ηt|t−1 + 1 + 2υ

)
ηt|t−1

(
1 + ηt|t−1

) (
υ + 1 + ηt|t−1

)] , (2)

where ψ (x) and ψ′ (x) are the gamma and digamma functions respectively. It is interesting to notice that

the score with respect to λ appears in the last term of the score with respect to ϑ. This highlights the close

relation between the scale and the tail index parameter.

From Figure 3 it is possible to see that for values of εt close to the median the response of the score with

respect to ϑ tends to increase as η falls, while the score with respect to λ remain unchanged. On the other

hand for large positive and negative values of εt the score with respect to ϑ is unbounded and its response

increases in magnitude as η increases, while for the score with respect to λ decreases up to the point of

becoming bounded for very low values of η. This makes sense, since, as the degrees of freedom increases,

the observations very far from the median are more informative of a variation in the behaviour of the tails

and depending on how heavy the fitted distribution is at every point in time these observations would be

discounted more. Ultimately given that both εt and ηt|t−1 vary over time, it is more helpful to consider the

score response at every t as a three dimensional function as showed in Figure 4.

As shown by Harvey and Lange (2017), sometimes it is easier to estimate the tail index parameter by

estimating its inverse η. However, in modelling the tail index parameter dynamically with our specification,

modelling η means simply giving dynamics to −ϑt|t−1; the score then becomes negative but ultimately it

7This general set up of the link function nests several specifications. For instance if instead we decide to model the inverse of
the degrees of freedom, η, with a logistic function which restrict it to be 0 < η < 1, like η̄ = exp 2ϑ

1+exp 2ϑ
, then η = 1 + e−2ϑ,

which is our specification with η† = 1 and ηs = −2.
8see Harvey and Lange (2017).
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Figure 4: Three dimensional surface of score of the unbounded tail index parameter for −2 < ε < 2, and 1/2 < η < 8.

make no difference in the estimation of the magnitude of the dynamic parameters of ϑt|t−1. Then the

Dynamic Scale-Tail model can be described in the following way,

yt = µ+ εt exp
(
λt|t−1

)
, εt | Ft−1

iid∼ Gen-t
(
ηt|t−1; υ

)
, t = 1, . . . , T (3)

A first order DCS model for dynamic scale and tail index can be described by,λt+1|t = (1− φλ)ωλ + φλλt|t−1 + κλu
λ
t

ϑt+1|t = (1− φϑ)ωϑ + φϑϑt|t−1 + κϑu
ϑ
t

t = 1, . . . , T, (4)

where uϑt = ∂ ln ft
∂ϑ I

−1
ϑϑ and where the information matrix with respect to the static parameters besides µ is,

I


υ

λ

ϑ

 =


Iυυ Iυλ Iυϑ
Iλυ Iλλ Iλϑ
Iϑυ Iϑλ Iϑϑ


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Iυυ = η
υ
[
(1−η)υ

η − ln η + ψ
(
η
υ

)
− ψ

(
1
υ

)]2
+ [υ + η (η + υ + 1)]ψ′

(
η
υ

)
+ [η + υ (η + 1) + 1]ψ′

(
1
υ

)
υ4 (υ + η + 1)

−

− (1 + η)
2

η4υ4
ψ′
(
η + 1

υ

)
−
υ2
(
1 + η2

)
+ η (η + υ + 1)

ηυ2 (η + υ + 1)

Iλϑ = ηs
(
η − η†

) [ 1

(η + υ + 1)
− 1

(η + 1)

]
Iλυ = η

ψ
(
η
υ

)
− ψ

(
1
υ

)
− ln η + υ(η+1)

η

υ (η + υ + 1)

Iϑυ = −ηs
(
η − η†

)
η

[
ψ
(
η
υ

)
− ψ

(
1
υ

)
− η(υ+1)+1

η − ln η

υ (η + 1) (η + υ + 1)
+
ηψ′

(
η
υ

)
− (η + 1)ψ′

(
η+1
υ

)
υ3

]

All its elements are independent of λ.

Given how often the tail index dynamics is bounded in the literature, in appendix Appendix A we made

an important analysis of the implications of bounding the tail index parameter by η† on the score response.

As a result we have identified that bounding the tail index can imply serious distortions to the score response.

These distortions can ultimately affect the fit since they makes harder for the dynamic parameter, once next

to the bound, to move away from it. Moreover, noting that since the score function naturally tends to push

the dynamic parameter away from very low values, the chances of the parameter actually falling below 1

and staying there are much lower when the tail index is unbounded than when is bounded. Therefore, for

our modelling purposes we will then assume for the rest of the paper η† = 0 and ηs = 1.

3. Detecting Time varying Dynamics in Tail Index Parameters

3.1. The LM approach

Testing techniques for detecting dynamics in parameters of a DCS model have been presented for dynamic

correlation in Harvey and Thiele (2016). Following from their approach, in the case of a single time varying

parameter, let’s say ϑ, with dynamics as in Equation (4) driven by its unstandardised conditional score9

uϑt =
∂ ln ft
∂ϑt|t−1

, t = 1, ..., T,

where ft denotes the conditional distribution of the t-th observation, yt, at time t,

A test against the presence of dynamics in an otherwise static model can be based on the Portmanteau

statistic

Qu(P ) = T

P∑
j=1

r2u(j), (5)

9For simplicity of exposition we limit ourself in the derivation of the LM test statistic in the case of unstandardised scores.
However, while working with standardised scores, if the information matrix with respect to the time varying parameters are
only dependent on shape parameters like the tail index (which is the case for the t and Generalised t distributions), under
the null of static tail index they are fixed scalars. For this reason we could rewrite the ”update” part of Equation (4) as

κϑû
ϑ
t = κϑI−1

ϑϑ
∂ ln ft
∂ϑt|t−1

= κ̂ϑu
ϑ
t . In our case this applies to both scale and tail index.

9



where ru(j) is the j-th sample autocorrelation of uϑt . The Box-Ljung modification,

Q∗u(P ) = T (T + 2)

P∑
j=1

(T − j)−1r2u(j),

may also be used. The asymptotic distribution of both statistics under the null hypothesis is χ2
P .

Remark 1. Rather than fixing P, it may be selected using a consistent information criterion, as in Es-

canciano and Lobato (2009). Under the null hypothesis, only the first lag is selected in large samples with

probability one. As a result, the asymptotic distribution under the null hypothesis is χ2
1.

Since Equation (4) is not identifiable under the null hypothesis φϑ = κϑ = 0, the Portmanteau test may

be derived as a Lagrange Multiplier (LM) test under the null hypothesis that κϑ0 = κϑ1 = .... = κϑP−1 = 0,

against the alternative κϑi 6= 0, i = 0, ..., P − 1, in its Q-MA approximate representation

ϑt+1pt = ωϑ + κϑ0u
ϑ
t + ...+ κϑP−1u

ϑ
t+1−P , t = 1, ..., T.

defined as

LMu(P ) =
1

T

[
0′ ∂ lnL/∂κ′ϑ

]Ψθθ Ψθκ

Ψκθ Ψκκ

−1  0

∂ lnL/∂κϑ

 , (6)

where κ = (κϑ0, κϑ1, ..., κϑP−1) and θ is the vector of all the other fixed parameters, which in this case

consist only of ωϑ. Under this conditions it is shown by Harvey and Thiele (2016) that

LMu(P ) =
1

T

∂ lnL

∂κ′ϑ
Ψ−1κκ

∂ lnL

∂κϑ
= T

P∑
j=1

r2u(j) (7)

when the process is very persistent, that is when in Equation (4) the dynamic parameter φϑ is close to one,

larger values of P may yield more powerful tests. Another possibility suggested by Harvey (2013) is to use

the test proposed by Nyblom (1989), which is a general test for parameter constancy against a random walk

alternative based on the LM principle. In the present context, the statistic ends up being based on the same

scores as in the Portmanteau test. It can be written as

N =
1

T 2σ2
ϑu

T∑
j=1

 T∑
k=j

uϑk

2

.

Under the null hypothesis of parameter constancy, N has a Cramer-von Mises distribution. Although the

Nyblom test is usually regarded as a test against a random walk alternative, it can also be interpreted as a

test against a very persistent, but stationary, alternative10.

However the LM test statistic simplifies to Equation (7) only if ϑt|t−1 is the only time varying parameter

under the alternative hypothesis and there are no other time invariant parameters to be estimated in the

10See, for example, Harvey and Streibel (1998) and Harvey and Thiele (2016).
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conditional distribution of the data. When we have fitted a DCS model to the data for a time varying

parameter, let’s say λt|t−1 through a Beta-t-EGARCH model11, the LM test statistic for detecting dynamics

in another parameter, like the tail index ηt|t−1 is12

LMu(P ) =
1

T

∂ lnL

∂κ′ϑ
Ψ−1κκ

∂ lnL

∂κϑ
+

1

T

∂ lnL

∂κ′ϑ

[
Ψ−1κκΨκθ

(
Ψθθ −Ψ′κθΨ

−1
κκΨκθ

)−1
Ψ′κθΨ

−1
κκ

] ∂ lnL

∂κϑ
, (8)

This result leads to the following

Proposition 1. If the data generating process yt is

yt | Ft−1
iid∼ Gen-t

(
ϕt|t−1, ηt|t−1; υ

)
, t = 1, . . . , T

and the dynamic scale ϕt|t−1 is fitted by a Beta-Gen t-EGARCH model13, the Lagrange Multiplier test for

the dynamics of ηt|t−1 = η†+eηsϑt|t−1 under the null of κϑ0 = κϑ1 = .... = κϑP−1 = 0, against the alternative

κϑi 6= 0, i = 0, ..., P − 1, in the dynamic model

ϑt+1pt = ωϑ + κϑ0u
ϑ
t + ...+ κϑP−1u

ϑ
t+1−P , t = 1, ..., T.,

takes the form

LMu(P ) = Qu(P ) + TI2λϑg′
(

Ψθθ −
I2λϑ
I2ϑϑ

1− a2P

1− a2
gg′
)−1

g

 P∑
j=1

rϑu (j) aj−1

2

(9)

where Qu(P ) is the standard Portmanteau statistic, rϑu (j) are the sample autocorrelations of the fitted

scores with respect to ϑ under the null, Ψθθ is the portion of the dynamic information matrix of the joint

model related to the other estimated static parameters θ = (υ, ωλ, φλ, κλ, ωϑ)
′

as described in the appendix.

g =
(
κλ

(
hυ − κλhλ

1−a Iλυ
)
, κλhλ

1−φλ
1−a , 0, Iλϑ, κλ

(
hϑ − κλhλ

1−a Iλϑ
))′

. Iλϑ and Iϑϑ are elements of the infor-

mation matrix of the static model. a = φλ−κλIλλ, hυ = E
[
uϑt

∂uλt
∂υ

]
, hλ = E

[
uϑt

∂uλt
∂λ

]
and hϑ = E

[
uϑt

∂uλt
∂ϑ

]
.

Under the null hypothesis the test is distributed with a Chi-Square asymptotic distribution with P degrees of

freedom.

Remark 2. If the shape parameter υ is not estimated14, the LM test statistics can be computed in the same

way as in Equation (9) just removing from the block matrix Ψθθ and the vector g the row and column related

to υ.

In the following sections we will investigate the performance of both the simple Qu(P ) test and the

LMu (P ).

11which is a DCS model for dynamic scale which assumes t as conditional distribution as described in Harvey (2013).
12For details see Harvey and Thiele (2016)
13Which is the DCS model for scale that assumes a Generalised t as a conditional distribution, as introduced by Harvey and

Lange (2017).
14Or fixed to υ = 2, as in the case of the t Distribution
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3.2. Tests Simulation Study

Here the power and size of the tests are assessed under various parameters assumptions. For this purpose

we have designed a simulation study on the same lines as the one used to assess the implications of bounding

the score in appendix Appendix A: we have generated N = 1000 samples of length T = 500, 1, 000, 2, 000

assuming that the data generating process is conditionally distributed with a t distribution with dynamic

scale, ϕt|t−1 = exp(λt|t−1), and dynamic degrees of freedom, ηt|t−1 = exp(ϑt|t−1). The dynamics of the two

parameters are modelled using an exponential link function in a DCS framework with dynamics as described

in Equation (4) with ωλ = −4.7, φλ = 0.985, κλ = 0.03, and ωϑ, φϑ and κϑ, adjusted in each simulation

to prevent the tail index to explode towards infinity. The exact specifications are described in Figures G.14

and G.15. In particular we have ωϑ = log 2, log 8, log 15 and log 30. For the size of the test we repeat the

simulations with the same dynamic parameters just assuming that φϑ = κϑ = 0.

To perform the test, we first fit the Beta-t-EGARCH model, which is a DCS model for time varying scale

that assumes that the data are conditionally t-distributed, therefore a Generalised t with υ = 215. From

this we have obtained the fitted scale, ϕ̂t|t−1, and the fitted residuals, as xt = yte
−λ̂t|t−1 . Then we use the

estimated η̂ parameter to compute the scores with respect to ϑ under the null hypothesis of no dynamics, as

ûϑ†t =
η̂

2

[
ψ

(
η̂ + 1

2

)
− ψ

(
η̂

2

)
− 1

η̂
+ ln

(
1− b̂t

)
+

(1 + η̂)

η̂
b̂t

]
, t = 1, ..., T (10)

and then construct the full LM test statistic for various P .

We also compare the results from the simple Portmanteau test on the fitted scores, Q∗u (P ), which is

referred to as the simple LM test statistic, here presented in its more robust Box-Ljung version. To do so

we instead fit a static t distribution to the xt and then we use the new estimated degrees of freedom η̂∗ to

compute the ûϑ∗t and then the simple Q∗u (P ).

In Figures G.14 and G.15 we can see that, as expected, the power of the test tends to decrease as the

sample size T decreases while the implied size tends to increase slightly. Since ωϑ is the unconditional mean

of ϑt|t−1 we can see that, as the true unconditional mean of the time varying degrees of freedom η0 = exp(ωϑ)

increases, the power of the test tends to decrease while its size tends to increase. The highest power is when

η0 is close to 2. This result can be explained by the fact that as the degrees of freedom increases the score

of the likelihood with respect to ϑ tends to flatten. Therefore, as η0 increases beyond 10 it is difficult to

estimate the exact values of η which would maximise the likelihood. This can also be noticed in the results

in Tables H.3 to H.5 where it is possible to see that as ωϑ increases the standard errors of the estimates of

the dynamic parameters of ϑt|t−1 also increase, making the estimates less accurate. Overall we can see that

the model is quite reliable in estimating the correct dynamics of ηt|t−1 when ωϑ ≤ log 15.

We can also notice that fitting the dynamic tail also helps the fit of the scale. This can be seen from the

results of the Box-Ljung test in the same tables which shows how the residual correlation in the fitted score

with respect to the scale parameter, ûλt , tends to disappear when fitting the joint model, in particular for

15See Harvey (2013).
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true values of ωϑ ≤ log 8.

Comparing the two tests, overall the simple Box-Ljung test has slightly more power than the full LM

test and a lower size, with the difference becoming more apparent as we decrease the number of observations

and increase the lags P . This is because the constant I2λϑg′
(
Ψθθ − I

2
λϑ

I2ϑϑ
1−a2P
1−a2 gg′

)−1
g in Equation (9) is

estimated in all the cases as negative, making the full LM test more conservative than the simple Box-Ljung.

However the magnitude of the constant is often close to zero, between 10−3 and 10−5, falling rapidly as the

number of lags increase. In any case, given such a small difference in power, the gap between the results of

the two tests is expected to disappear if we were to correct the LM test for the size16.

Given these results we can assert that the simple Box-Ljung test is as powerful at detecting dynamics in

the tail index parameter as the full LM test, and is even more accurate in presence of smaller sample sizes

T .

3.3. Test Comparison

In this section we compare the performance of the full LM test and of the Simple LM test with the GAS-

LM test developed by Calvori et al. (2017), another test developed for dynamic parameters in the score-driven

literature. The GAS-LM test is also based on the fitted scores, with respect to the dynamic parameter tested,

under the null of static dynamics. Calvori et al. (2017) show how the test performs generally well particularly

in presence of a strong unobserved mean reverting dynamics and that it has significantly higher power than

other competitors, such as the ones developed by Andrews (1993) and Muller and Petalas (2010).

The empirical power of the GAS-LM test is compared against the power of the full LM and the simple

Q∗ test assuming the all the tests are performed both with P = 1 and P ∗ chosen by the automatic algorithm

of Escanciano and Lobato (2009). Finally we include also the Nyblom test as a benchmark, since is often

also seen as a general test for parameter instability.

In order to do so we have performed a series of simulations of the same model used in Section 3.2 with the

same dynamic specification for the parameter λt|t−1. For the dynamics of the tail index parameter, ϑt|t−1,

we used two values for its unconditional mean ωϑ = log 2, log 8. For other dynamic parameters we have

used κϑ = c/(5T ) for ωϑ = log 8 and κϑ = c/(2.5T ) for ωϑ = log 2 while φϑ =
√

1− κϑ. Then c is left to

vary in between the range [1, · · · , 21]. Under this specification we can assess the performance of the tests

under various assumptions of persistence for the dynamic tail index parameter while making sure that the

simulated parameter doesn’t explode to infinity. For each specification we perform N = 1, 000 simulations

under both T = 500, 1, 000.

From the results of the tests in Figure G.18 we can see that, as showed previously, the performances of

the full LM and simple Q∗ tests are very similar. The GAS-LM(1) test tends to fail to capture the presence

of a dynamic tail index parameter in all the cases while, on the other hand the GAS-LM(*) becomes quite

competitive in most of the cases. In particular it has the highest power, for both values of ωϑ and sample

size T , when c is low and therefore the tail index has a very persistent dynamics. The full LM, Q∗ and

16Moreover the LM is only asymptotically and locally more powerful than other tests.
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Figure 5: Power comparison under simulation of the full LM test, the simple LM test, Q, the GAS-LM test of Calvori
et al. (2017) and the Nyblom for either 1 lag or a number of lags defined by the criterion of Escanciano and Lobato
(2009), (∗). The comparisons are performed under different assumptions of persistency in the true dynamics of the
tail index parameter ϑt|t−1 as well as assuming an average tail index value of either ϑ = 2 or ϑ = 8 and time series
lengths of both T = 500 and T = 1, 000.

Nyblom have a relative poor performance for low c but tend to pick up quite rapidly. In particular the power

of the full LM(*) and Q∗(∗) tends to be in general higher than the power of the GAS-LM(*), particularly

with T = 1, 000. The power of the LM(1) and Q∗(1) is never higher than the power of the GAS-LM(*) for

T = 500, while for T = 1, 000 for both the tests is significantly higher except for some small values of c. The

performance of the Nyblom test is almost never better than the one of the LM-GAS(*) test. The power of

the Nybloom test is much worse when T = 500, while for T = 1, 000 tends to be more or less the same as th

one of the LM-GAS(*) test for most of the values of c.

In general we can say that the GAS-LM(*) is a good alternative when the underlying dynamics of the

tail index parameter is very persistent and we are in presence of a small sample size. On the other hand, in

the majority of the cases the LM(*) and Q∗(∗) are better at detecting dynamics in tail index parameters.
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4. Extending the Statistical Framework: Asymmetric Tails Modelling

As in Harvey and Lange (2017), given a model as in Section 2, skewness in the Generalised t distribution

can be easily introduced by defining negative and positive residuals as follows,

εt =

ε
−
t = yt−µ

2(1−α)ϕ , yt ≤ µ

ε+t = yt−µ
2αϕ , yt > µ

where the parameter α, 0 < α < 1, governs the skewness; for α = 1/2 the distribution is symmetric. The

distribution can be further generalised to its asymmetric version as follows,

ft (yt) =


f1t (yt) = K12

ϕ

(
1 +
|ε−t |
η1

υ1
)− (η1+1)

υ1

, yt ≤ µ

f2t (yt) = K12

ϕ

(
1 +
|ε+t |
η2

υ2
)− (η2+1)

υ2

, yt > µ

Each ηi and υi governs the shape for the left and right side of the distribution. K12 = 1/ [α/K1 + (1− α) /K2],

with Ki = K (ηi, υi) for i = 1, 2. The distribution then is symmetric if η1 = η2 as well as υ1 = υ2. If the

distribution is asymmetric the score is more complex and it is different for the left and right tail, as well as

the corresponding information matrices. For the dynamic scale parameter

∂ ln ft
∂λ

=

(1 + η1) b1t − 1 ; yt ≤ µ

(1 + η2) b2t − 1 ; yt > µ

, Iλλ =


η1υ1

υ1+η1+1 ; yt ≤ µ

η2υ2
υ2+η2+1 ; yt > µ

where b1t =
|ε−t |υ1/η1t|t−1

|ε−t |υ1/η1t|t−1+1
and b2t =

|ε+t |υ2/η2t|t−1

|ε+t |υ2/η2t|t−1+1
. then we have that

uλt =
[(

1 + η1t|t−1
)
b1t − 1

] υ1 + η1t|t−1 + 1

η1t|t−1υ1
1(εt≤0) +

[(
1 + η2t|t−1

)
b2t − 1

] υ2 + η2t|t−1 + 1

η2t|t−1υ2

(
1− 1(εt≤0)

)
With only the scale parameter as dynamic we have the model of Harvey and Lange (2017) and with υ = 2

we have the AST DCS model of Thiele (2020). Now we can introduce dynamics to the tail index parameters

through the conditional scores

∂ ln ft
∂ϑ1

=

η̃1
(η1t|t−1−η†1)

υ1

[
α+τ1 + ln (1− b1t) + 1

η1

(
∂ ln f1t
∂λ + 1

)]
; yt ≤ µ

η̃1
(η1t|t−1−η†1)

υ1
α+τ1 ; yt > µ

, (11)

∂ ln ft
∂ϑ2

=

η̃2
(η2t|t−1−η†2)

υ2
(1− α+) τ2 ; yt ≤ µ

η̃2
(η2t|t−1−η†2)

υ2

[
(1− α+) τ2 + ln (1− b2t) + 1

η2

(
∂ ln f2t
∂λ + 1

)]
; yt > µ

, (12)
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Figure 6: Plot of the score with respect to different residuals values εt for υ1 = υ2 = 2 and η1 = η2 = 2 (Blue),
η1 = η2 = 6 (Black), η1 = η2 = 10 (Red). The score with respect to η1 (Left) and the score with respect to η2
(Right).

and

I1ϑϑ =



η̃21
(η1t|t−1−η†1)

υ1

([
(1− α+) τ1 + α+ (1− α+)

(η1t|t−1−η†1)
υ1

τ21 − α+

η̃1

∂τ1
∂ϑ1

]
−

− (η1t|t−1−η†1)
η2
1t|t−1

η1t|t−1(υ1−1)−(υ1+1)

(η1t|t−1+1)(η1t|t−1+1+υ1)

)
; yt ≤ µ

η̃21
(η1t|t−1−η†1)

υ1

[
α+ (1− α+)

(η1t|t−1−η†1)
υ1

τ21 − α+

η̃1

∂τ1
∂ϑ1
− α+τ1

]
; yt > µ

, (13)

I2ϑϑ =



η̃22
(η2t|t−1−η†2)

υ2

[
α+ (1− α+)

(η2t|t−1−η†2)
υ2

τ22 −
(1−α+)
η̃2

∂τ2
∂ϑ2
− (1− α+) τ2

]
; yt ≤ µ

η̃22
(η2t|t−1−η†2)

υ2

([
α+τ2 + α+ (1− α+)

(η2t|t−1−η†2)
υ2

τ22 −
(1−α+)
η̃2

∂τ2
∂ϑ2

]
−

− (η2t|t−1−η†2)
η2
2t|t−1

η2t|t−1(υ2−1)−(υ2+1)

(η2t|t−1+1)(η2t|t−1+1+υ2)

)
; yt > µ

, (14)

The asymmetry mixing parameter α+ is defined as

α+ =
α/K1

α/K1 + (1− α) /K2

which as noted by Harvey and Lange (2017) is the probability of having a negative observation. The

parameters τi and their derivatives are defined as

τi =ψ

(
ηit|t−1 + 1

υi

)
− ψ

(
ηit|t−1

υi

)
− 1

ηit|t−1

∂τi
∂ϑi

=η̃i

(
ηit|t−1 − η†i

)
υi

[
ψ′
(
ηit|t−1 + 1

υi

)
− ψ′

(
ηit|t−1

υi

)
+

υi
η2it|t−1

]

Then it is possible to model each of the individual tail index parameters through the link function ηit|t−1 =

η†i + eη̃iϑit|t−1 , where η̃i = 1 if we are modelling the tail index parameter and η̃i = −1 if we are modelling its

inverse, and a dynamic QARMA specification for ϑit|t−1 of the form

ϑit+1|t = (1− φiϑ)ωiϑ + φiϑϑit|t−1 + κiϑu
ϑ
it t = 1, . . . , T
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where uϑit = ∂ ln ft
∂ϑi
I−1iϑϑ, all for i = 1, 2. Finally, following Zhu and Galbraith (2010) we can construct the

Loglikelihood function as

L (ψλ, ψ1ϑ, ψ2ϑ, α υ1, υ2) =−
T∑
t=1

λt|t−1 +

T∑
t=1

lnK12

(
η1t|t−1, η2t|t−1, υ1, υ2

)
−

−
T∑
t=1

(
η1t|t−1 + 1

)
υ1

ln

(
1 +

|εt|υ1

η1t|t−1

)
1(εt≤0)−

−
T∑
t=1

(
η2t|t−1 + 1

)
υ2

ln

(
1 +

|εt|υ2

η2t|t−1

)(
1− 1(εt≤0)

)
whereψλ, ψ1ϑ andψ2ϑ are the vectors containing the parameters for the dynamic specifications of λt|t−1, ϑ1t|t−1

and ϑ2t|t−1.

Existing models in the extreme value theory literature focus only on observations which exceed a pre-

determined threshold and are therefore considered as belonging to the ”tail” of the distribution. This means

that the ”non-tail observations” or, particularly in the case of asymmetric tails modelling, the observations

that fall in the opposite tail to the one modelled are treated as missing17. In the DCS framework, the score

with respect to each tail index is still only directly affected by the residuals which appear in its side of the

distribution since, as can be seen in Figure 6, its response is flat starting from the median and continuing

through for all the residuals values in the opposite side of the distribution. This is because for an observation

belonging to the opposite side of the distribution, the last two terms of Equation (11) and Equation (12),

which depends on bit, disappear; as would happen for an observation at the median. Therefore, in this

case the score generates the same response as if the observation was at the median, instead of treating the

observation as missing, and producing a response of 0. Moreover, the score in this case still depends on

both α+ and τi which use information from both the tails. Due to this structure also in this case the score

remains time varying through its dependence on both η1t|t−1 and η2t|t−1. This feature comes directly from

the conditional score of the asymmetric distribution, rather than arbitrarily setting a treshold to define which

are the ”tail obsernvations”. As a consequence, at each point in time the DCS asymmetric tail model uses

more information from the observations in both sides of the distribution in fitting the true dynamics of each

of the two tail index parameters.

5. Empirical Results

For the reminder of the paper we will be focusing only on the t distribution and its asymmetric counter-

part. Therefore we are restricting υ = υ1 = υ2 = 2 and α = 1/2.

In order to investigate the effectiveness of the new dynamic tail model on different types of data series, we

have considered returns from Equity Indexes and Credit Default Swaps, which are known for their extreme

fluctuations over time.

17For example, at time t the residual εt > 0 would consider it as a missing observation while modelling the lower tail parameter
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Mean St. Dev. Skewness Kurtosis Min. Max. Q(20)

FTSE 100 0,000 0,011 -0,480 12,561 -0,130 0,0934 86,201
CDS 5Y Italy 0,001 0,043 0,288 18,912 -0,437 0,429 25,395

Table 1: Descriptive Statistics

For the equity indexes we have considered the Dow Jones Index daily log returns. The data are collected

from Yahoo Finance and are between the 29th of January 1985 to the 29th of April 2016. For the CDS we

have considered daily log returns of 5y CDS rates for the Italian sovereign debt. The data are collected from

Bloomberg and are from the 1st of March 2007 to the 21st of September 2018. The particular choice of the

CDS data series was motivated by the fact that, among the European sovereign CDS, it was the one that

exhibits the most extreme behaviour while maintaining a relative high liquidity.

From Table 1 it is possible to see that the two series considered both have a high sample kurtosis, higher

for the CDS than for the Equity Index. The CDS series is right skewed while having a sample standard

deviation four times higher than the Equity Index, which comes out as left skewed. In all the cases there

are signs of residual correlation at lag 20.

In order to estimate the Dynamic Scale-Tail DCS model we have first fitted to both the series a beta-

t-EGARCH DCS model, assuming a conditional t distribution. Than, using the fitted residuals we have

computed the scores under the null, ûϑ†t , as in Equation (10) and performed the simple Box-Ljung test

Q∗u(P )18. Then, where appropriate, we have fitted the general Dynamic Scale-Tail DCS model19 . All

the estimations are performed by maximum likelihood20. Both Conditional Symmetric and Asymmetric t

distributions specifications were considered.

Remark 3. In modelling the individual tails of the Asymmetric t distribution, the score with respect to the

dynamic tail index parameter of each of the tails depends on the observations only if the observation falls

in its tail. For this reason, the simple test Q∗u(P ) performed on each individual tail index parameter will

effectively use less observations and therefore we expect it to have a lower power compared to a test based on

the symmetric tail index parameter.

In fitting the Beta-t-EGARCH model to the Dow Jones Index returns series we had to assume a two

components dynamics for λt|t−1, as described in Harvey (2013) pg.91-92, in order to capture the long memory

feature of return’s volatility and remove all the residual correlation in the fitted scores with respect to λ

which could affect, through the scores with respect to the tail index parameter uϑt , the accuracy in the

detection and estimation of the tail index parameter dynamics.

18Another reason for preferring the simple Box-Ljung version of the test is that, besides from its simplicity and effectiveness,
it allows for an immediate comparison with the Box-Ljung test performed on the fitted scores to detect residual correlation
after having fitted the Dynamic Tail.

19When fitting a dynamic tail index parameter the score with respect to the scale parameter λt|t−1 should also be standardised
by its static information quantity Iλλ, since this would also be time varying.

20Since the estimation of the general Dynamic Scale-Tail model is not trivial, to improve the accuracy of the parameters
estimates we have first fitted to the standardised data a Dynamic Tail DCS model, assuming the tail index parameter to
be dynamic and the scale constant set to 1. Than we used the estimated parameters in combination with the parameter
estimates of the Beta-t-EGARCH DCS model as starting values for the parameters of full Dynamic Scale-Tail DCS model.
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Figure 7: Fitted degrees of freedom of the Dow Jones Index Returns in the symmetric case (Top), η̂t|t−1, and for the
Lower Tail in the asymmetric case (Bottom),η̂1t|t−1 η̄t|t−1.

Given the length of the series it raises the question if we should take into account possible leverage effects.

The problem in doing so is that we are introducing some sort of asymmetric response to negative returns in

the scale dynamics, which could affect the behaviour of our dynamic asymmetric tail model. For this reason

we provide in Table H.6 the results without and with leverage effect, which can be added to the dynamics

of the components of λt|t−1 as

λt|t−1 = ωλ + λ1,t|t−1 + λ2,t|t−1

λi,t+1|t = φi,λλi,t|t−1 + κi,λu
λ
t + κ∗i,λsgn(−yt)(uλt + 1) i = 1, 2

In Table H.7 it is possible to see that in the case of the model without leverage the Q∗u(P ) test rejects the null

of static degrees of freedom in the symmetric case, but in the asymmetric case only for the parameter for the

lower tail η1, suggesting a dynamic lower tail and a static upper tail. This result can explain the findings of

Mazur and Pipień (2018), who identified the left tail of returns to be more variable and consistently heavier

than the right tail. The Dynamic Scale-Tail model is then fitted accordingly. From Table H.6 it is possible

to see that the dynamics of the degrees of freedom parameters are not too persistent with the parameter

for the lower tail being less persistent than the one for the symmetric tail. The Box-Ljung test results on

the fitted scores in Table H.8 suggests that the model fits the dynamic parameter well, removing all the

correlation from the Q∗u(P ) test up to lag 50. We have to notice thought that the simple Beta-t-EGARCH

with two components, either with symmetric or asymmetric tails, is not capable to remove entirely the

residual correlation from the fitted scores with respect to the scale parameter λt|t−1. However after letting

the tail parameters be dynamic, also all the residual correlation in the dynamic scale parameter λt|t−1 is then

removed. The improvement in the fit from modelling the data with a dynamic tail is ultimately confirmed
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Figure 8: Plot of the fitted scale exp
(
λt|t−1

)
without leverage, (Red Line), and the inverse of the fitted degrees of

freedom for the Lower Tail η̄1t|t−1 of the Dow Jones Index Returns in the asymmetric case, (Blue Line), with the
confidence bounds for one and two standard deviations from the mean.

by the higher likelihood and lower information criteria.

As can be seen in Figure 7, the fitted symmetric parameter ηt|t−1 moves between 1 and 6.5 but mostly

staying around 6.5. This somehow is similar to the results found by Blazsek and Monteros (2017); Ayala

et al. (2017) on the S&P 500 and Massacci (2017) on the shape parameter behaviour of small firms, which

seemed to have a ”floor” around a constant number. Ultimately it falls below 1 only in the case of the ”Black

Friday” market crash of November ’89. Figure 7 shows also the plot of the fitted parameter η1t|t−1 for the

lower tail which is on average around 6, slightly heavier than the symmetric one but with almost identical

fluctuations just slightly more pronounced.

To identify the effect of the occurrence of notable market events on the lower tail movements, in Figure 8

we have plotted the inverse of the symmetric tail parameter η̄t|t−1 against the fitted time varying scale

exp
(
λt|t−1

)
. From this is possible to see that the heaviness of the lower tail of the returns distribution

matches most of the notable market events. However its movements are not necessary linked to volatility.

As expected there are cases when volatility is high and the lower tail is also heavier, as for the case of

the ”Black Monday”. However the vast majority of extreme movements in the lower tail happens when

the volatility moves the least. From this we can identify the ”Black Friday” November ’89 market crash

which followed the ”Black Monday”, the November ’91 market crash due to congress vote on increasing the

credit card rates and the February ’07 market crash at the beginning of the subprime crisis when Greenspan

suggested the possibility for the US to enter in a recession. All these were unexpected extreme events which

moved the market unidirectionally down while the volatility fitted by the Beta-t-EGARCH didn’t move

much. On the other hand events like the Leheman default are fully taken into account into the volatility of

the market leaving the heaviness of the lower tail almost unaltered.

Looking instead at the inverse of the lower tail parameter η̄1t|t−1 in Figure G.16, we can see that there

are less spikes and some of them are less pronounced. However some of the events identified in Figure 8 are

still present here, confirming the idea that most of the extreme events tends to occur in presence of negative

returns.

Once introduced the asymmetric response in the scale parameter through the leverage component in the
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Figure 9: Plot of the the fitted estimated degrees of freedom, ηt|t−1 for the symmetric model.

Beta-t-EGARCH all the remaining residual correlation in the fitted scores with respect to λt|t−1 is removed.

On the other hand from Table H.9 it is possible to see that in the asymmetric tails case the Q∗u(P ) reveals

residual correlation only in the fitted scores with respect to the upper tail parameter, η2, rather than in

the lower tail. This can be explained by the fact that the inclusion of the leverage term allows the scale to

capture most of the extreme negative movements neglecting some of the positive which ultimately should

be modelled separately. All the estimated κ∗i,λ are positive and the leverage impact is mostly confined in

the less persistent component of λt|t−1, confirming the findings of Harvey and Lange (2018). The symmetric

dynamic tail model has similar fitted dynamics and paths for the parameter ηt|t−1 to the case without

leverage. However, the fitted η2t|t−1 is quite persistent with a different path from η1t|t−1 in the case without

leverage. The path of its inverse in Figure G.16 reveals much less extreme movements, partly due by its long

run average around exp (ωη2) = 10.014, which occurs at different time periods t than for η̄1t|t−1. However

these are still periods when the volatility is low. Finally, we can see from Table H.6 that there is an overall

significant preference in terms of likelihood and information criteria for the asymmetric Scale-Tail model

with the leverage term, however this fails to capture some of the residual correlation in the fitted scores with

respect to scale at earlier lags.

These results can be explained by the fact that as the tail index parameter of the conditional distribution

falls, the score with respect to scale that drives its dynamics becomes more bounded preventing extreme

scale movements as long as they are not persistent in the series, see Harvey (2013). This feature, in the

score driven literature, it has been explained by the robustness to outliers of the score with respect to scale.

However, once allowed for the tails of the conditional distribution to vary, sudden unexpected extreme events,

if repeated, rather than moving the scale tend to move the tail, which becomes more heavier and allows allows

for more extreme events to occur. The phenomenon is clearer in the asymmetric case where, for example, if

the leverage effect on scale is not taken into account the lower tail index moves to capture these rapid non

persistent falls of the series neglected by the scale, which are detected in the residual correlation of fitted

scores with respect to the tail index parameter. In this way the model can effectively distinguish between

scale movements and tail movements, either if they occur occasionally or are more persistent. In the case of

Index Returns tail movements seems to be rarely persistent, therefore the effectiveness of the dynamic tail
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Figure 10: The top figure shows a plot of the the fitted estimated degrees of freedom, η2t|t−1 and η1t|t−1, for the
upper and lower tail in the asymmetric model, (Black and Red line respectively). On the bottom figure shows the
spread between the upper and lower tail dynamic degrees of freedom of the asymmetric distribution, η2t|t−1−η1t|t−1.

model could be better appreciated instead with series which exhibits more extreme and frequent occurrences

of extreme events.

In fitting the scale of the Italian CDS series with the Beta-t-EGARCH model a one component dynamics

is enough to remove most of the residual correlation in the fitted scores with respect to λt|t−1 up to lag 50, a

part from lag 1 and 5. This can be noticed from the results of the Box-Ljung test in Table H.12 where is also

possible to see that the Q∗u(P ) rejects the null of static degrees of freedom up to lag 50 in both the symmetric

and asymmetric cases. To remove fully this residual correlation from the fitted scores with respect to ϑt|t−1

we have opted in the symmetric case for a QARMA(1,1) specification as

ϑt+1|t = (1− φϑ)ωϑ + φϑϑt|t−1 + κ1ϑu
ϑ
t + κ2ϑu

ϑ
t−1

while in the asymmetric case we have used the same QAR(1) dynamics as described in Equation (4) for both

individual tail parameters.

In Table H.11 is possible to see that all the three fitted dynamic tail index parameters are very persistent,

almost I(1). Also in this case the improved fit of the Dynamic Scale-Tail specification is confirmed by a

higher Likelihood and lower information criteria. In Figures 9 and 10 is possible to see that the fitted tail

index parameters are much more persistent than in the case of Index Returns21 and tend to move quite

21This is because CDS returns exhibits more frequent and extreme movements than Index returns.
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closely together between 4 and 1. In both the cases they all stay for long periods under 2 in the early part of

the sample, like around the ’08 Lehman default, while, as can be seen in Figure 9, the symmetric tail index

parameter falls also below 1 in that same period, suggesting that the conditional distribution could at times

not have variance22. This result shows how dynamic models which focuses on moments of the conditional

distribution, like GARCH, can become invalid in this context. However, the tail index parameter only fall

below 1 for short periods of time despite not being bounded since, as explained in appendix Appendix A,

the score naturally pushes the tail index parameter away from extremely low values unless in presence of a

large number of very extreme observations. The tail index parameter of the symmetric distribution is the

one that tends to move the most and seems to follow mostly the movements of the lower tail, despite being

sometimes higher than either of the two tail index parameters in the asymmetric specification.

In regards to asymmetric distribution, the relative comparison of its tail parameters is presented in

form of the spread η2t|t−1 − η1t|t−1, which seems informative of periods of financial distress for the country.

Indeed the periods when the spread becomes negative23 coincides with the periods of economic and political

turbulence in Italy, when the CDS rates have increased rapidly.

5.1. Conditional Distribution Modelling under Dynamic Tails

The inclusion of dynamic tails has a direct impact on the actual modelling of the conditional distribution

of the data which can be better appreciated looking at its quantiles. Figure 11 shows the upper and lower

0.5% quantiles fitted by the GARCH model and the asymmetric Dynamic Tail DCS model on the Italian 5Y

CDS returns data series. From this we can see that the returns data series touches quite often the upper and

lower quantiles fitted by the GARCH model. This suggests that there have been several occasions across the

dataset in which returns exhibits movements that should happen with probability 0.5%. Precisely, across the

whole sample 1.36% of the data crosses the GARCH upper quantile and 1.19% the lower quantile, while in

the case of the asymmetric Dynamic Tail DCS model only the 0.03% for both the upper and lower tail. This

suggest that the GARCH model is far less conservative than the Dynamic Tail Index model underestimating

the occurrence of extreme events. This can be clearly seen also in the occasion of the 15th of July 2008, two

months before the Leheman bankruptcy, when the 5Y Italy CDS moved from 21.167 to 32.5 in one day. The

GARCH model estimated that this event could have occurred with a probability of 0.06%, while the static

Beta-t-EGARCH DCS model with a probability of 0.57% and the symmetric and asymmetric Dynamic Tail

DCS models with probabilities of 2.22% and 1.18% respectively.

In order to see if these significant differences can also be detected out-of-sample we have made a density

forecasting exercise where we have obtained one-step-ahead point and density forecasts on the 5y Italy CDS

data for the two years in the sample. A total of 730 observations out-of-sample. The forecasts are obtained

re-estimating the models using all the data up to the previous date to one forecasted.

22These low values coincides effectively with periods when the CDS is quite illiquid and there are many consecutive zeros which
makes the conditional distribution very heavy tailed. However the total number of zeros in the entire sample is less than 5%
and are are mainly located in these early parts of the sample.

23These are periods in which the lower tail is closer to Gaussianity than the upper tail and therefore implies more extreme
returns towards positive values.
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Figure 11: Plot of the 0.5% upper and lower quantiles of the conditional distribution of the returns series for the
Italian 5y CDS Rates (Black Line), when fitted by a GARCH model (Red Line) and a DCS with dynamic asymmetric
tails (Blue Line).

We define the one-step-ahead p-lower and p-upper Value-at-Risk (VaR) as the quantity

VaR1p (yT+1) = inf {x ∈ R : P (yT+1 ≤ x|FT ) ≥ p} , VaR2p (yT+1) = sup {x ∈ R : P (yT+1 ≥ x|FT ) ≤ 1− p}

which for a symmetric distribution around 0 are respectively VaR1,1−p (yT+1) = F−1YT+1|T
(p) and VaR2p (yT+1) =

−F−1YT+1|T
(p), where FYT+1|T (.) is the one-step-ahead forecasted conditional CDF of the quantity yt. In case

of an asymmetric distribution centred at 0 with one-step-ahead forecasted conditional CDFs F1YT+1|T (.) and

F2YT+1|T (.) for the distributions describing respectively the left and right tail of the distribution of yt, we

have that VaR1p (yT+1) = F−11YT+1|T
(p) and VaR2p (yT+1) = −F−12YT+1|T

(p). On the other hand we define the

one-step-ahead lower and upper Expected Shortfall (ES) as

ES1p (yT+1) =E [−yT+1|yT+1 ≤ VaR1p (yT+1) , FT ] = −1

p

∫ VaR1p(yT+1)

−∞
xfYT+1|T (x) dx

ES2p (yT+1) =E [yT+1|yT+1 ≥ VaR2p (yT+1) , FT ] =
1

p

∫ ∞
VaR2p(yT+1)

xfYT+1|T (x) dx

Given these measures of one-step-ahead VaR and ES over the out-of-sample forecasting period, we then

define the hit-processes

h1T+1 (p) =1(yT+1<VaR1p(yT+1))

h2T+1 (p) =1(yT+1>VaR2p(yT+1))

hT+1 (2 ∗ p) =h1T+1 (p) + 2h2T+1 (p)

In this way we can construct both the unconditional coverage and independence likelihood ratio tests of

Christoffersen (1998) for the VaR violations for both the upper and the lower tail, individually or jointly.

The first test corresponds to the null H0 : E [hiT+1 (q)] = P (hiT+1 (p) = 1) = p, while the second tests the

null hypothesis H0 : P (hiT+1 (p) = 1|hiT (p)) = p. For both the individual tails the tests are distributed

as χ2 (1). The tests for the joint violations are described in the paper as tests for the asymmetry of the
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predictive distribution which can be easily constructed also in our framework. Since they have three possible

outcomes, 2 for up violation, 1 for low violation and 0 for no violation, they are distributed with a χ2 (2)

and χ2 (4) respectively.

To evaluate the ES for both the tails we have used the unconditional backtest of Du and Escanciano

(2017). These tests can be constructed from the cumulative violation processes

H1T+1 (p) =
1

p

∫ p

0

h1T+1 (q) dq =
1

p
(p− PITT+1) 1(yT+1<VaR1p(yT+1))

H2T+1 (p) =
1

p

∫ 1

1−p
h2T+1 (q) dq =

1

p
(1− p− PITT+1) 1(yT+1>VaR2p(yT+1))

Where PITT+1 = FYT+1|T (yT+1) are the conditional one-step-ahead probability integral transforms (PIT)

computed on the out-of-sample data. Du and Escanciano (2017) show that testing the correct specification

of the ES simplifies to test weather the mean of the HiT+1 (p) is equal to p/2 and can be tested through the

t statistics

tES =
¯Hi (p)− p/2√
vES (p) /Tf

where ¯Hi (p) is the sample mean of the HiT+1 (p), vES = V ar (HiT+1 (p)) = p (1/3− p/4) and Tf is the

number of out-of-sample observations24.

From the results of the unconditional coverage test in Table H.14 we can see that in the case of fixed

tails the quantiles levels are significantly misspecified, in particular in the case of the GARCH and for the

lower tails of the DCS models. This can be explained by the fact that, given the assumption of gaussianity

of the GARCH, the time variation in the quantiles only depends on the variation in the conditional variance

which tends to spike in presence of extreme events. As a consequence the model overestimates the quantiles

closer to the median in favour to the one in the tails, as can be seen from the results of the unconditional

coverage tests. The results of the unconditional backtests shows that in the lower tail the lower ES are

underestimated for the quantiles closer to the median and in the higher tail the upper ES are overestimated

for the quantiles further in the tails.

In the case of the symmetric fixed tail DCS model, or beta-t-EGARCH, the estimated degrees of freedom

are pushed low by the extreme movements of the upper tail overestimating the quantiles further in the lower

tail. This produce an overal good estimate of the upper ESs for the higher tail and underestimates the

lower ESs for the lower tail. In the case of the asymmetric fixed tail DCS model, or the asymmetric t (AT)

DCS model of Thiele (2020), the upper tail index parameter is estimated smaller than the lower tail index

parameter. However not taking into account of the time variation in the tails the quantiles tend to still be

overestimated in the case of the lower tail and underestimated in the case of the upper tail, with a more

significant problem for the ES of the lower tail.

On the other hand looking at the results for the dynamic tails DCS models, the tails are much better

24We have also considered the conditional backtest of Du and Escanciano (2017), however the low number of rejections was not
enough to discriminate between models, therefore the results are not reported.
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taken into account. However still in the symmetric model the dynamics is mainly driven by the upper tail

movements, therefore some of the quantiles further in the lower tail are significantly overestimated in respect

to the asymmetric model. In terms of unconditional independence test, we have that the violations of the

quantiles tends to be significantly dependent only for some quantiles in upper tails of the the fixed tails

models, while the dependence is completely removed in the dynamic tail models.

The overall predictive likelihood of the DCS models is much higher than in the GARCH with comparable

sizes across the the various specifications. The only exception is for the symmetric dynamic tail DCS model,

which due to its more erratic ARMA specification in the dynamics of the tail index parameter, has a predictive

likelihood slightly lower than the other DCS models. For this reason, and the results of the tests, we can

assume that the asymmetric dynamic tails DCS model is the most appropriate to model the 5y Italy CDS

dataset.

As a further illustration of the results, in Figure G.17 and Figure G.18 we can see the lower and upper

out-of-sample ES from the same analysis25 reported as ratios on the ES forecasted by the GARCH. From

these we can see that the GARCH model underestimates in both the cases the length of the tails. The ES

forecasted are for the 10% quantiles half the one forecasted with the dynamic tails models and for the 0.1%

quantile from 5 times up to in some occasions more than 35 times the ones forecasted with the dynamic

tails models. In general the Expected Shortfall ratios from the asymmetris fixed tail DCS model tends to be

higher for the upper tail and lower for the lower tail than for the symmetric fixed tail DCS model. On the

other hand, the Expected Shortfall ratios for the asymmetric dynamic tail DCS model tends to vary a lot

across the sample. For most of the out-of-sample dataset they are lower than the one of the asymmetric fixed

tail DCS model in the case of the lower tail, while they move rapidly both above and below the the one of

the asymmetric fixed tail DCS model depending on the time periods. As expected, the largest fluctuations

across the forecasted sample happen for the 0.1% quantile.

6. Conclusion

The present work studies the time variability of the occurrence of extreme events in time series. This

can be described by the fluctuations over time of the tail index of the conditional distribution of the data.

The paper introduces a dynamic DCS model for the tail index parameter while assuming that the data are

generated by a conditional Generalised t distribution.

An LM test to detect the presence of dynamics in the tail index parameter is also introduced. This

is based on the autocorrelation of the score with respect to the tail index parameter under the null of no

variability. A closed form solution of the test is derived. The power and size of the full LM test are then

compared with a simple Box-Ljung test performed on the fitted scores of the model under the null. The

results reveal that the full LM test is a more conservative version of the Box-Ljung with a lower probability

25Here the Expected Shortfall from the Symmetric Scale-Tail model has been excluded to better appreciate the difference
between the other models given the fact that due to the its ARMA specification in the tail parameter its tail has very large
fluctuations.
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of rejection. The difference is more pronounced in cases when the tail index is particularly low or there

are fewer observations. The comparison is then extended to include also the GAS-LM test of Calvori et al.

(2017) and the Nyblom test. The GAS-LM test, with lags automatically set by the algorithm of Escanciano

and Lobato (2009), performs better than the LM in presence of an extremely persistent tail index parameter

and with a small sample size. However in all the other cases the newly introduced tests, both LM and the

simple Box-Ljung, are superior in terms of power than all the other competitors.

The efficiency of the Dynamic Tail DCS model in estimating the dynamic parameters of the tail index

is also assessed under various parameter assumptions. As expected, the results show that the estimation

accuracy of the model falls as the sample size decrease. However, this happens faster when the true tail

index is on average around 30 or larger. On the other hand, the model is particularly effective when the true

tail index is on average smaller than 15.

Finally the Generalised t distribution is extended to its asymmetric version in order to give a separate

dynamics to the upper and lower tail index parameters.

Further implications of bounding the dynamics of the tail index parameter to guarantee the existence

of moments are also analysed in the appendix. The analysis reveal that the bounding can imply serious

distortions in the score response and therefore affect the performance of the filter in capturing the true

dynamics of the tail index.

Both the models, symmetric and asymmetric, and the tests are then empirically implemented on market

returns data from the Dow Jones Equity Index and the 5Y Italy CDS. The results show that, in the case

of the Equity Index, the tests detect a dynamics in the symmetric tail index parameter. However if the

distribution is believed to be asymmetric the dynamics is detected only in the lower tail index parameter

if we do not including a leverage term in the scale dynamics, or in the upper tail index parameter if we

include the leverage term. Moreover both the fitted dynamic tail indexes are not too persistent and tend to

be bounded from above falling only rarely below 1.

In the case of the CDS returns both the symmetric and the two asymmetric tail index parameters are

detected to be dynamic. All three parameters have a very persistent dynamics moving from 4-6 down below

1 occasionally. The analysis of the spread between the upper and the lower tail index parameters in the

asymmetric case shows how the relative heaviness of the two tails varies considerably over time. The two

parameters tends to move together for most of the data sample, diverging mostly in the last part where, in

particular between 2016 and 2017, the upper tail is heavier than the lower tail. This is consistent with the

rapid increase of the CDS price during the political crisis in Italy. Finally, an out-of-sample analysis of the

forecasted quantiles and Expected Shortfalls have proven that the dynamic Tail DCS models are much less

conservative than the GARCH in forecasting the tails length, and therefore forecasting higher probabilities

of occurrence of extreme events with significant evidences of asymmetries and time variation in magnitudes

depending on the time periods.

This tails behaviours are of high interest for practitioners, therefore the model can have many empirical

applications. In particular, in the asymmetric model would be interesting to investigate if there are cases in

which an increase in magnitude of one tail can imply an increase in magnitude in the other tail, as shown by
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Massacci (2017). Moreover would be interesting to investigate the impact of the inclusion of other variables

regarding the real economy as explanatory variables on the fit of the tails for both the Equity and CDS

datasets. Finally, in terms of systemic risk, would be interesting to look at these analysis in a multivariate

framework also across countries. For example, we could try to assess the possible relation between cross-

country or cross-assets tail movements. Finally, this model could give another perspective on the idea of tail

association while setting up dynamic copulas.
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Appendix A. Bounding the Tail Index Dynamics

The score with respect to the tail index parameter is a continuous function of the residuals at every

time period t. The advantage in modelling the tail index parameter with such a score-driven approach in

comparison to the one from extreme value theory is that, rather than focusing only on the observations that

fall in the tails, it makes coherent use of all the observations in the time series. It is important to bear in

mind that in a DCS-EGARCH model, once η is estimated and fixed for every t, the score with respect to λ

is only a function of εt. On the other hand, in a DCS dynamic tail model, once the fixed shape parameters

are estimated, at every t the score with respect to ϑ can be considered as a three dimensional function of

both εt and ηt|t−1.

As can be seen also in Figure 4, the score response for observations around the median increases as ηt

becomes smaller. The reason for this is that as η decrease the t distribution becomes more heavy tailed,

with longer tails, expecting a more frequent occurrence of extreme events. Since at low values of η events

around the median should be less frequent than events in the tails, every new non-extreme observation

should contain more information on a potential tail index movement towards Gaussianity. This is taken into

account by the score which increases the tail index and pushes the distribution more towards normality.

Given a tail index value of η a distribution has only k < η finite moments. For example, for η = 1

the t distribution becomes a Cauchy distribution which doesn’t have finite variance. For this reason when

modelling a dynamic tail index previous studies have tried to restrict ηt not to fall below either 2 or 1. The

easier way to do so is to modify the link function η = η† + eηsϑ so that η† = 1, 2. The problem in doing this

is that it creates distortions to the score function which for η† = 1 becomes as in Figure A.12.

Under these conditions, counter intuitively, score response towards new realization decreases as the tail

index parameter approaches 1. This means that if the tail index parameter is around 1.5, despite the fact

that the conditional distribution is quite heavy tailed at that point, the tail index parameter is much less

responsive to movements of εt, taking much more time to go back to normality even if the majority of the

new observations are close to the median of the distribution. As showed in Figure A.12 this effect can be

mitigated by standardising the score by the information quantity Iϑϑ26, however the issue now is that, as η

approaches 1, the response of the score to new realizations is very high and can move the tail index parameter

very rapidly towards infinity.

In order to better understand the implications for the score function of bounding the tail index and

standardising it by the information quantity, we have made a simulation study. We have generated data

from a conditional symmetric t distribution with a dynamic DCS model for scale and degrees of freedom

with dynamics given by Equation (4) with ωλ = −4.7, φλ = 0.985, κλ = 0.03, ωϑ = (1/ηs) log(2 − η†),

26The idea of standardising by the information matrix is not new in the score driven literature, Harvey (2013) and Creal et al.
(2013) have already proposed this correction to the score on the line of the method of scoring. However, given that in general
while modelling location or scale parameters the information matrices with respect to these parameters are only dependent
on the shape parameters of the conditional distribution, if these are static then also the information matrix is time invariant.
This means that the standardization simply results in scaling the time varying scores by a constant factor having little or no
effect on the score response. On the other hand, if when the shape parameters are time varying, like the tail index, it makes
a significant difference which can be appreciated in the current study.
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Figure A.12: Three dimensional surface of the score of the bounded tail index parameter with lower-bound η† = 1 for
residuals −2 < ε < 2, and 1 < η < 8, unstandardised (Left) and standardised (Right) by the information quantity.

φϑ = 0.99 and κϑ = 0.025. In Table A.2 we can see the results of four simulations between bounding or not

the tail index with η† = 1 and standardising the score it by its information quantity27. In each of the cases

the results reported are the average across N = 1000 simulations of length t = 2000. From those results it

is possible to see that bounding the tail index makes its dynamics even less responsive to variations in εt,

indeed both the range and the standard deviation of the simulated paths of the tail index decreases. On

the other hand standardising the score when the tail index is bounded by 1 makes the score function very

responsive to εt up to approaching an explosive behaviour which in 20% of the simulations pushes η towards

very large positive numbers, approaching infinity. On the other hand, in both the cases of not bounding the

tail index less than 1% of the simulated η happen to fall below the bound of 1 and even in these cases the

magnitude of the average violation below 1 is around 0.06. This is due to the tendency of the score function

to push the η higher when is already low, therefore the number of bound violations is marginal on average

and very little in magnitude even without bounding. Looking at the results for Range and at Figure A.13

the unbounded standardised score function is the one most responsive without becoming explosive.

For al these reasons we suggest that bounding the tail index is not advisable. However if it is found

to be necessary, one should do it by standardising the score by the information quantity. In any case our

preference is to model dynamic tail indexes with an unbounded tail index and a standardised score which

appears to be the most flexible and reliable model specification.

Appendix B. Expectations of functions of Beta functions

Given Lemma 1 in Harvey (2013), pg 23, a random variable b distributed with a beta (α, β)28 and w (b)

is a function of a b with finite expectation,

E
[
bh (1− b)k w (b)

]
=
B (α+ h, β + k)

B (α, β)
E [w (b)] , h > −α, k > −β

27the results are identical from either setting ηs = 1 or ηs = −1
28this means that 1− b is distributed with a beta (β, α)
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ωϑ = log 2
η† = 1 η† = 0

Unstand Score Stand Score Unstand Score Stand Score

Mean 2,001 2,777 2,006 2,095
Std 0,041 1,371 0,159 0,662
Min 1,882 1,104 1,530 0,905
Max 2,092 11,064 2,351 4,506

Range 0,210 9,960 0,821 3,601
Avg n. per sym η ≤ 1 0,000 0,000 0,001 28,679

% η ≤ 1 0,000 0,000 0,000 0,014
Avg

∣∣ηt|t−1 − 1
∣∣ ≤ 1 - - 0,001 0,067

Avg n. per sym η ≥ 100 0,000 19,334 0,000 0,000
% η ≥ 100 0,000 0,010 0,000 0,000

Table A.2: Results of simulating from a Dynamic Scale-Tail DCS model considering the bounding and standardising
the score by the info matrix.
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Figure A.13: Simulated dynamic tail index patters with a Scale-Tail DCS model, with unbounded and standardised
score (Left), unbounded and unstandardised score (Middle), bounded and unstandardised score (Right).

where B (α, β) is a beta function and now the expectation on the right-hand side is now understood to be

with respect to a beta (α+ h, β + k) distribution. Then

E
[
lnh (b) lnk (1− b)

]
=

∫ 1

0

lnh (x) lnk (1− x)
xα−1 (1− x)

β−1

B (α, β)
dx

=
1

B (α, β)

∫ 1

0

∂h

∂αh
∂k

∂βk
xα−1 (1− x)

β−1
dx

=
1

B (α, β)

∂h

∂αh
∂k

∂βk
B (α, β)

Bearing in mind that ∂
∂αB (α, β) = B (α, β) [ψ (α)− ψ (α+ β)], and ∂(l)

∂α(l)ψ (α) = ψ(l) (α) which are the

digamma and multigamma functions respectively.

Appendix C. Derivation of the score and the information matrix with respect

to the Tail Index Parameter

Given a link function for the tail index of the form ηt|t−1 = η† + eηsϑt|t−1 , its derivative with respect to

ϑ is ∂η/∂ϑ = ηs
(
η − η†

)
.
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Now given the function K (η, υ) = υ

2η
1
υ

1

B( 1
υ ,

η
υ )

, its derivative with respect to ϑ is,

∂K

∂ϑ
=
υ

2

(
− 1

η
1
υ

(
ψ
(
η
υ

)
− ψ

(
η+1
υ

))
B
(
1
υ ,

η
υ

) − 1

υ

1

η
1+υ
υ

(
η − η†

)
ηs

B
(
1
υ ,

η
υ

) )

= K (η, υ)
ηs
(
η − η†

)
υ

[
ψ

(
η + 1

υ

)
− ψ

(η
υ

)
− 1

η

]

Then the log likelihood function of the Generalised t distribution for a single observation is

ln f (yt) = − lnϕ+ lnK
(
ηt|t−1, υ

)
−
ηt|t−1 − 1

υ
ln

(
1 +

1

ηt|t−1

∣∣∣∣yt − µϕ

∣∣∣∣υ)

Then its derivative with respect to ϑ is

∂ ln ft
∂ϑt|t−1

=
K
(
ηt|t−1, υ

) ηs(ηt|t−1−η†)
υ

[
ψ
(
ηt|t−1+1

υ

)
− ψ

(ηt|t−1

υ

)
− 1

ηt|t−1

]
K
(
ηt|t−1, υ

) −

−

ηs (ηt|t−1 − η†)
υ

ln

(
1 +

1

ηt|t−1

∣∣∣∣yt − µϕ

∣∣∣∣υ)−
(
ηt|t−1 + 1

)
υ

ηs
(
ηt|t−1 − η†

) ∣∣∣yt−µϕ ∣∣∣υ
η2t|t−1

(
1 + 1

ηt|t−1

∣∣∣yt−µϕ ∣∣∣υ)


=
ηs
(
ηt|t−1 − η†

)
υ

[
ψ

(
ηt|t−1 + 1

υ

)
− ψ

(ηt|t−1
υ

)
+ ln (1− bt) +

(
ηt|t−1 + 1

)
ηt|t−1

bt −
1

ηt|t−1

]
= uϑt

Where bt =
|εt|υ/ηt|t−1

1+|εt|υ/ηt|t−1
and εt = yt−µ

ϕ . If εt is distributed Generalised t with shape parameters ηt|t−1 and

υ, then bt is distributed with a beta
(
1/υ, ηt|t−1/υ

)
. Then bearing in mind that

∂ bt
∂ϑt|t−1

= − |εt|
υ

η2t|t−1

ηs
(
ηt|t−1 − η†

)(
1 + |εt|υ

ηt|t−1

)2 = −ηs
(
ηt|t−1 − η†

)
ηt|t−1

bt (1− bt)

Then the second derivative of ut with respect to ϑt|t−1.

∂2 ln ft
∂ϑ2t|t−1

=
∂uϑt

∂ϑt|t−1

= ηs
∂ ln ft
∂ϑt|t−1

+ ηs

(
ηt|t−1 − η†

)
υ

[(
ψ′
(
ηt|t−1 + 1

υ

)
− ψ′

(ηt|t−1
υ

))
ηs

(
ηt|t−1 − η†

)
υ

+ ηs

(
ηt|t−1 − η†

)
η2t|t−1

+

+
1

1− bt
bt (1− bt) ηs

(
ηt|t−1 − η†

)
ηt|t−1

− bt
η2t|t−1

ηs
(
ηt|t−1 − η†

)
−
(

1 +
1

ηt|t−1

)
ηs

(
ηt|t−1 − η†

)
ηt|t−1

bt (1− bt)

]

= η2s

(
ηt|t−1 − η†

)
υ

[
τ +

1

ηs

∂τ

∂ϑ
+ ln (1− bt) +

(
1 +

1

ηt|t−1
+

(
ηt|t−1 − η†

)
ηt|t−1

−
(
ηt|t−1 − η†

)
η2t|t−1

)
bt−

−
(

1 +
1

ηt|t−1

) (
ηt|t−1 − η†

)
ηt|t−1

bt (1− bt)

]

Where τ = ψ
(
ηt|t−1+1

υ

)
− ψ

(ηt|t−1

υ

)
− 1

ηt|t−1
while ∂τ

∂ϑ = ηs
(ηt|t−1−η†)

υ

[
ψ′
(
ηt|t−1+1

υ

)
− ψ′

(ηt|t−1

υ

)
+ υ

η2
t|t−1

]
.
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Then, taking the expectation

E

[
∂2 ln ft
∂ϑ2t|t−1

]
= η2s

(
ηt|t−1 − η†

)
υ

(
1

ηs

∂τ

∂ϑ

)
+ η2s

(
ηt|t−1 − η†

)
υ

{τ + E [ln (1− bt)] +} .(
1 +

1

ηt|t−1
+

(
ηt|t−1 − η†

)
ηt|t−1

−
(
ηt|t−1 − η†

)
η2t|t−1

)
E [bt]−

(
1 +

1

ηt|t−1

) (
ηt|t−1 − η†

)
ηt|t−1

E [bt (1− bt)]

]

= η2s

(
ηt|t−1 − η†

)
υ

[
1

ηs

∂τ

∂ϑ

]
+

+ η2s

(
ηt|t−1 − η†

)
υ

[(
1 +

1

ηt|t−1
+

(
ηt|t−1 − η†

)
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−
(
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)
η2t|t−1

)
1

1 + ηt|t−1
− 1
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−

−
(
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)
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(
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= η2s

(
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)
υ

[
1

ηs

∂τ

∂ϑ
+

(
ηt|t−1 − η†

)
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(
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) (
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)
− ηt|t−1

(
1 + ηt|t−1

)
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(
1 + ηt|t−1

) (
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) ]

Therefore ultimately we have that −E
[
∂2 ln ft
∂ϑ2

t|t−1

]
= Iϑϑ in Equation (2). Now looking at the asymmetric

Generalised t distribution, given that for i = 1, 2 we have that

∂α+

∂ϑit|t−1
= (−1)

i
α+
(
1− α+

) ηis (ηit|t−1 − η†i)
υi

[
ψ

(
ηit|t−1 + 1

υi

)
− ψ

(
ηit|t−1

υi

)
− 1

ηit|t−1

]

and

∂ lnK12

(
ηit|t−1, ηjt|t−1, υi, υj

)
∂ϑit|t−1

= −a+i ηis
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υi

[
ψ

(
ηit|t−1 + 1

υi

)
− ψ

(
ηit|t−1

υi

)
− 1

ηit|t−1

]

where a+i = α+ if i = 1 and a+i = 1 − α+ for i = 2, the result in Equations (11) and (12) follows. Now

taking the second derivative with respect to ϑit|t−1 we have that

∂2 ln ft
(∣∣εit∣∣)

∂ϑ2it|t−1
= ηis

∂ ln ft
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Than taking the unconditional expectation

[
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υi

a+i 1
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

where i = 1, 2 and j = 1, 2 for i 6= j. Ultimately we have that −E
[
∂2 ln ft(|εit|)
∂ϑ2

it|t−1

]
= Iiϑϑ in Equations (13)

and (14).

Appendix D. Derivation of the basic LM test

The derivation below is essentially as in Harvey (2013), sub-section 2.5.1, but stated in terms of ϑ. Let

the bold face vector θ denote other fixed parameters, including ωϑ, and let κ′ϑ = (κϑ0, κϑ1, ..., κϑP−1). from

the dynamic equation of ϑt|t−1 The LM test statistic is given by

LMu(P ) =
1

T

[
0′ ∂ lnL/∂κ′ϑ

]Ψθθ Ψθκ

Ψκθ Ψκκ

−1  0

∂ lnL/∂κϑ

 , (D.1)

where Ψκκ denotes the information matrix for κϑ for a single observation, Ψθθ is the corresponding matrix

for θ and Ψθκ is the cross-product matrix. All of these matrices are evaluated at κϑ = 0, as is the score

vector ∂ lnL/∂κϑ. For the illustration of the simple test we assume that all the other fixed parameters in θ

besides ωϑ are calibrated rather than estimated29

Now for the t-th observation
∂ ln ft
∂κϑ

=
∂ ln ft
∂ϑtpt−1

∂ϑtpt−1
∂κϑ

29For example υ = 2 which would imply that the the DCS model assumes a Dynamic Conditional t-distribution for yt.
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and so

Ψκκ = E

[
∂ ln ft
∂κϑ

∂ ln ft
∂κ′ϑ

]
κ=0

= EEt−1

[
∂ ln ft
∂ϑtpt−1

∂ϑtpt−1
∂κϑ

∂ ln ft
∂ϑtpt−1

∂ϑtpt−1
∂κ′ϑ

]
= E

[
Et−1

[(
∂ ln ft
∂ϑtpt−1

)2
]
∂ϑtpt−1
∂κϑ

∂ϑtpt−1
∂κ′ϑ

]

= E

[(
∂ ln ft
∂ϑ

)2
]
E

[
∂ϑtpt−1
∂κϑ

∂ϑtpt−1
∂κ′ϑ

]
= IϑϑE

[
∂ϑtpt−1
∂κ

∂ϑtpt−1
∂κ′

]
.

Under the null hypothesis, the conditional expectation of the squared score, σ2
ϑu, is fixed and hence equal to

the information quantity in the static model.

We have

∂ϑt+1pt

∂κϑj
=
P−1∑
i=0

κϑi
∂uϑt−i
∂κϑj

+ uϑt−j , j = 0, ..., P − 1,

or
∂ϑt+1pt

∂κϑ
= κ′ϑ

∂uϑt
∂κϑ

+ uϑt ,

where uϑt = (uϑt , u
ϑ
t−1,..., u

ϑ
t−P−1)′, but under the null hypothesis κϑ = 0 and so ∂ϑt+1pt/∂κϑ = uϑt . Hence

E

(
∂ϑtpt−1
∂κϑ

∂ϑtpt−1
∂κ′ϑ

)
= σ2

ϑuIP ,

where IP is a P × P identity matrix, and Ψκκ = σ4
ϑuIP = I2ϑϑIP . Furthermore30

E

[
∂ ln ft
∂θ

∂ ln ft
∂κ′ϑ

]
κϑ=0

= EEt−1

[
∂ ln ft
∂θ

∂ ln ft
∂ϑtpt−1

∂ϑtpt−1
∂κ′ϑ

]
= E

[
∂ ln ft
∂θ

∂ ln ft
∂ϑ

]
E

[
∂ϑtpt−1
∂κ′ϑ

]
= 0

Note that because ωϑ appears in the dynamic equation

∂ ln ft
∂ωϑ

=
∂ ln ft
∂ϑtpt−1

∂ϑtpt−1
∂ωϑ

but under the null hypothesis ∂ϑtpt−1/∂ωϑ = 1. Hence E(∂ ln ft/∂ωϑ.∂ ln ft/∂ϑ) = E(uϑt)
2 = σ2

ϑu = Iϑϑ.

Thus Ψθκ = 0 and so

LMu(P ) =
1

T

∂ lnL

∂κ′ϑ
Ψ−1κκ

∂ lnL

∂κϑ
. (D.2)

30Note that because ωϑ, which is treated as an element of ϑ, appears directly in the dynamic equation,

∂ ln ft

∂ωϑ
=

∂ ln ft

∂ϑtpt−1

∂ϑtpt−1

∂ωϑ
=

∂ ln ft

∂ϑtpt−1
.1.
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On substituting for Ψκκ and noting that

∂ lnL

∂κϑj
=
∑ ∂ ln ft

∂ϑtpt−1

∂ϑtpt−1
∂κϑj

=
∑

uϑt u
ϑ
t−1−j , j = 0, 1, ..., P − 1,

the Q-statistic, Equation (5), is obtained.

Appendix E. Derivation of the full LM test

When some of the other parameters are time-varying or are time-invariant but have to be estimated, the

LM test becomes more complicated.

Given the block matrix decomposition in Equation (D.1) we have that.

LMu(P ) =
1

T

∂ lnL

∂κ′ϑ
Ψ−1κκ

∂ lnL

∂κϑ
+

1

T

∂ lnL

∂κ′ϑ

[
Ψ−1κκΨκθ

(
Ψθθ −Ψ′κθΨ

−1
κκΨκθ

)−1
Ψ′κθΨ

−1
κκ

] ∂ lnL

∂κϑ
, (E.1)

In our case, the Generalised-t distribution has also an additional parameter υ to be estimated. For these

reasons, assuming also a first order dynamics for λt|t−1, our θ vector is defined as, θ =
(
υ,ψ′λ, ωϑ

)′
, where ψλ

is the vector that contains the parameters that govern the dynamics of λt|t−1, ψ′λ = (ωλ, φλ, κλ)
′
. Starting

from deriving the scores with respect to the fixed parameters, we have that

∂ ln ft (yt | Yt−1;θ)

∂υ
=

∂ ln ft (yt | Yt−1;θ)

∂λtpt−1

∂λtpt−1
∂υ

+
∂ ln ft (yt | Yt−1;θ)

∂ϑtpt−1

∂ϑtpt−1
∂υ

+
∂ ln ft (yt | Yt−1;θ)

∂υ

∂ ln ft (yt | Yt−1;θ)

∂ψλ
=

∂ ln ft (yt | Yt−1;θ)

∂λtpt−1

∂λtpt−1
∂ψλ

+
∂ ln ft (yt | Yt−1;θ)

∂ϑtpt−1

∂ϑtpt−1
∂ψλ

∂ ln ft (yt | Yt−1;θ)

∂ψϑ
=

∂ ln ft (yt | Yt−1;θ)

∂λtpt−1

∂λtpt−1
∂ψϑ

+
∂ ln ft (yt | Yt−1;θ)

∂ϑtpt−1

∂ϑtpt−1
∂ψϑ

However, under the null hypothesis of κϑ = 0, η is estimated as fixed and is independent from λt|t−1 and

υ, therefore we have that ∂ϑtpt−1/∂ψλ = ∂ϑtpt−1/∂υ = 0. Moreover if, as in Harvey and Thiele (2016), we

assume that the dynamic parameter λt|t−1 is previously fitted with a univariate DCS-EGARCH model, λ̂t|t−1

would also be independent from the parameters governing the dynamics of η and therefore ∂λtpt−1/∂κϑ = 0.

The first element of the block matrix in Equation (D.1) is

Ψθθ′ = E

[
∂ lnL

∂θ

∂ lnL

∂θ′

]
=


Ψυυ Ψυψ′λ

Ψυωϑ

Ψψλυ Ψψλψ
′
λ

Ψψλωϑ

Ψωϑυ Ψωϑψ′λ
Ψωϑωϑ


The central element Ψψλψ

′
λ

is nothing more than the information matrix with respect to the dynamic
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parameters of a DCS-EGARCH model for λt|t−1 with first-order dynamic.

Ψψλψ
′
λ

= E

[
∂ ln ft(yt | Yt−1;θ)

∂ψλ

∂ ln ft(yt | Yt−1;θ)

∂ψ′λ

]
= IλλD(ψλ), (E.2)

where

D(ψλ) =
1

1− b


A D E

D B F

E F C

 , b < 1,

as in Harvey (2013, p 37). The formulae for A to F are

A = Iλλ, B =
κ2λI2λλ(1 + aφλ)

(1− φ2λ)(1− aφλ)
, C =

(1− φλ)2(1 + a)

1− a
,

D =
aκλI2λλ
1− aφλ

, E =
c(1− φλ)

1− a
and F =

acκλ(1− φλ)

(1− a)(1− aφλ)
,

and

a = Et−1(xt) = φλ + κλEt−1

(
∂uλt

∂λtpt−1

)
= φλ + κλE

(
∂uλt
∂λ

)
= φλ − κλIλλ

b = Et−1(x2t ) = φ2λ − 2φλκλIλλ + κ2λE

(
∂uλt
∂λ

)2

≥ 0, (E.3)

c = Et−1(uλt xt) = κλE

(
uλt
∂uλt
∂λ

)
, (E.4)

with

xt = φλ + κλ
∂uλt

∂λtpt−1
, t = 1, ...., T. (E.5)

The unconditional expectations can then replace the conditional ones because of the assumption that they

do not depend on λtpt−1, as per Condition 2 in Harvey (2013), p. 35.

Then looking now at the expectation of product of the score with respect to ψλ and υ.

Ψψλυ = E

[
∂ ln ft(yt | Yt−1;θ)

∂ψλ

∂ ln ft(yt | Yt−1;θ)

∂υ

]
= IλλE

[
∂λt+1|t

∂ψλ

∂λt+1|t

∂υ

]
+ IλυE

[
∂λt+1|t

∂ψλ

]

where for λt+1|t starting in the infinite past, and given |a| < ∞, E
[
∂λt+1|t/∂ψλ

]
exist and, as defined in

Lemma 6 in Harvey (2013), p. 36, can be expressed as

E

[
∂λt+1|t

∂ψλ

]
= E


∂λt+1|t
∂ωλ

∂λt+1|t
∂φλ

∂λt+1|t
∂κλ

 = E


xt
∂λt|t−1

∂ωλ
+ 1− φλ

xt
∂λt|t−1

∂φλ
+ λt|t−1 − ωλ

xt
∂λt|t−1

∂κλ
+ uλt

 =


1−φλ
1−a

0

0

 = d, t = . . . , 0, 1, ..., T., (E.6)
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Consider now the derivative of λt+1pt with respect to υ where ut(θtpt−1) indicates that λtpt−1 is held fixed

∂λt+1pt

∂υ
= φλ

∂λtpt−1
∂υ

+ κλ
∂uλt (λtpt−1)

∂υ
+ κλ

∂uλt
∂λtpt−1

∂λtpt−1
∂υ

= xt
∂λtpt−1
∂υ

+ κλ
∂uλt (λtpt−1)

∂υ
, t = 1, ..., T,

here xt is as in Equation (E.5); see Harvey (2013), p. 35. Taking conditional expectations gives

Et−1

(
∂λt+1pt

∂υ

)
= Et−1

(
xt
∂λtpt−1
∂υ

+ κλ
∂uλt (λtpt−1)

∂υ

)
= a

∂λtpt−1
∂υ

+ κλEt−1

(
∂uλt (λtpt−1)

∂υ

)

We can take the unconditional expectation of ∂uλt /∂υ when it does not depend on λtpt−1.

E

[
∂λt+1pt

∂υ

]
=

κλ
1− a

E

[
∂uλt (λtpt−1)

∂υ

]
=
−κλ
1− a

Iλυ., (E.7)

Furthermore, dropping (λtpt−1) from uλt (λtpt−1), we can now look at the expectations of the product of the

partial derivatives

E

[
∂λt+1|t

∂ψλ

∂λt+1|t

∂υ

]
= E


∂λt+1|t
∂ωλ

∂λt+1|t
∂υ

∂λt+1|t
∂φλ

∂λt+1|t
∂υ

∂λt+1|t
∂κλ

∂λt+1|t
∂υ

 , t = 0, 1, . . . , T., (E.8)

Starting form taking the conditional expectations we have

Et−1

(
∂λt+1|t

∂ωλ

∂λt+1|t

∂υ

)
= Et−1

(
x2t
∂λt|t−1

∂ωλ

∂λt|t−1

∂υ

)
+ κλEt−1

(
(1− φλ)

∂uλt
∂υ

)
+

+ (1− φλ)Et−1

(
xt
∂λt|t−1

∂ωλ

)
+ κλEt−1

(
xt
∂uλt
∂υ

∂λt|t−1

∂ωλ

)
= b

∂λt|t−1

∂ωλ

∂λt|t−1

∂υ
+ κλ (1− φλ)E

[
∂uλt
∂υ

]
+ a (1− φλ)

∂λt|t−1

∂ωλ

+κλEt−1

(
xt
∂uλt
∂υ

)
∂λt|t−1

∂ωλ

Given Condition 2 of Harvey (2013, pg 35), Et−1

(
xt
∂uλt
∂υ

)
its independent from t. Thus

Et−1

(
xt
∂uλt
∂υ

)
= φλEt−1

(
∂uλt
∂υ

)
+ κλEt−1

(
∂uλt
∂λ

∂uλt
∂υ

)
= −φλIλυ + κλE

[
∂uλt
∂λ

∂uλt
∂υ

]
(E.9)

Taking now the unconditional expectations given |b| < 1 we have that

E

[
∂λt+1|t

∂ωλ

∂λt+1|t

∂υ

]
=

κλ
1− b

(
(1− φλ)E

[
∂uλt
∂υ

]
+ a

(1− φλ)

(1− a)
E

[
∂uλt
∂υ

]
+

(1− φλ)

(1− a)
E

[
xt
∂uλt
∂υ

])
(E.10)

=
κλ

1− b
(1− φλ)

(1− a)
(κλbλυ − Iλυ) , (E.11)
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where bλυ = E
[
∂uλt
∂λ

∂uλt
∂υ

]
.

Et−1

(
∂λt+1|t

∂φλ

∂λt+1|t

∂υ

)
= Et−1

(
x2t
∂λt|t−1

∂φλ

∂λt|t−1

∂υ

)
+ κλEt−1

((
λt|t−1 − ωλ

) ∂uλt
∂υ

)
+

+Et−1

(
xt
(
λt|t−1 − ωλ

) ∂λt|t−1
∂υ

)
+ κλEt−1

(
xt
∂λt|t−1

∂φλ

∂uλt
∂υ

)
= b

∂λt|t−1

∂φλ

∂λt|t−1

∂υ
+ κλE

[
∂uλt
∂υ

] (
λt|t−1 − ωλ

)
+

+a
(
λt|t−1 − ωλ

) ∂λt|t−1
∂υ

+ κλEt−1

(
xt
∂uλt
∂υ

)
∂λt|t−1

∂φλ
,

Taking conditional expectations at Ft−2 of the third term and then unconditional expectations given that

E
[
λt|t−1 − ωλ

]
= 0 we have

Et−2

((
λt|t−1 − ωλ

) ∂λt|t−1
∂υ

)
= Et−1

((
xt−1

∂λt−1|t−2

∂υ
+ κλ

∂uλt−1
∂υ

)(
φλ
(
λt−1|t−2 − ωλ

)
+ κλu

λ
t−1
))

= aφλ
(
λt−1|t−2 − ωλ

) ∂λt|t−1
∂υ

+ cκυ
∂λt|t−1

∂υ
+ κ2υE

[
uλt−1

∂uλt−1
∂υ

]
+κλφλE

[
∂uλt−1
∂υ

] (
λt−1|t−2 − ωλ

)
E

[(
λt|t−1 − ωλ

) ∂λt|t−1
∂υ

]
=

κ2λ
1− aφλ

(
E

[
uλt−1

∂uλt−1
∂υ

]
− c

1− a
Iλυ
)

Then taking the unconditional expectation of Et−1

(
∂λt+1|t
∂φλ

∂λt+1|t
∂υ

)
we have

E

[
∂λt+1|t

∂φλ

∂λt+1|t

∂υ

]
=

a

(1− aφλ)

κ2λ
(1− b)

(
cυ −

c

1− a
Iλυ
)

(E.12)

where cυ = E
[
uλt

∂uλt
∂υ

]
. Then

Et−1

(
∂λt+1|t

∂κλ

∂λt+1|t

∂υ

)
= Et−1

(
x2t
∂λt|t−1

∂κλ

∂λt|t−1

∂υ

)
+ κλEt−1

(
uλt
∂uλt
∂υ

)
+

+Et−1

(
xtu

λ
t

∂λt|t−1

∂υ

)
+ κλEt−1

(
xt
∂λt|t−1

∂κλ

∂uλt
∂υ

)
= b

∂λt|t−1

∂κλ

∂λt|t−1

∂υ
+ κλE

[
uλt
∂uλt
∂υ

]
+

+Et−1
(
xtu

λ
t

) ∂λt|t−1
∂υ

+ κλEt−1

(
xt
∂uλt
∂υ

)
∂λt|t−1

∂κλ

which after taking unconditional expectations becomes

E

[
∂λt+1|t

∂κλ

∂λt+1|t

∂υ

]
=

κλ
1− b

(
cυ −

c

1− a
Iλυ
)
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Therefore

Ψψλυ =
κλ

(1− b)
Iλλ


κλ

(1−φλ)
(1−a) bλυ
aκλ

(1−aφλ)cυ

cυ

− Iλυ


(1−φλ)
(1−a)

(
1− κλ

(1−b)Iλλ
)

acκ2
λ

(1−a)(1−b)(1−aφλ)Iλλ
cκλ

(1−a)(1−b)Iλλ


=

κλ
(1− b)

Iλλg (υ) + Iλυd

Looking now at the expectation of product of the scores with respect to υ.

Ψυυ = E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂υ

∂ ln ft+1(yt+1 | Yt;θ)

∂υ

]
= Iυυ + IλλE

[
∂λt+1|t

∂υ

∂λt+1|t

∂υ

]
+ 2IλυE

[
∂λt+1|t

∂υ

]

Starting from the conditional expectation of
∂λt+1|t
∂υ

∂λt+1|t
∂υ

Et−1

(
∂λt+1|t

∂υ

∂λt+1|t

∂υ

)
= Et−1

(
x2t
∂λt|t−1

∂υ

∂λt|t−1

∂υ

)
+ κ2λEt−1

(
∂uλt
∂υ

∂uλt
∂υ

)
+

+2κλEt−1

(
xt
∂uλt
∂υ

∂λt|t−1

∂υ

)
= b

∂λt|t−1

∂υ

∂λt|t−1

∂υ
+ κ2λE

[
∂uλt
∂υ

∂uλt
∂υ

]
+ 2κλEt−1

(
xt
∂uλt
∂υ

)
∂λt|t−1

∂υ

Noticing that

Et−1

(
xt
∂uλt
∂υ

)
= κλE

[
∂uλt
∂λ

∂uλt
∂υ

]
− φλIλυ

we can then take the unconditional expectation of Et−1

[
∂λt+1|t
∂υ

∂λt+1|t
∂υ

]
to obtain

E

[
∂λt+1|t

∂υ

∂λt+1|t

∂υ

]
=

κλ
1− b

[
κ2λbυυ −

2κ2λ
(1− a)

(κλbλυ − φλIλυ) Iλυ
]

(E.13)

where bυυ = E
(
∂uλt
∂υ

)2
. Therefore

Ψυυ = Iυυ +
κ2λ

(1− b)
Iλλ

[
bυυ −

2κλ
(1− a)

Iλυbλυ
]
− κλ

[
2

(1− a)
+

φλκλ
(1− b)

Iλλ
]
I2λυ

Now keeping in mind that ∂ϑt+1|t/∂ωϑ = 1 we can focus on the blocks which include the partial derivative
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with respect to ωϑ

Ψυωϑ = E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂υ

∂ ln ft+1(yt+1 | Yt;θ)

∂ωϑ

]
= E

[
Et−1

(
∂ ln ft+1

∂λt+1|t

∂ ln ft+1

∂λt+1|t

)
∂λt+1|t

∂υ

∂λt+1|t

∂ωϑ
+ Et−1

(
∂ ln ft+1

∂λt+1|t

∂ ln ft+1

∂ϑt+1|t

)
∂λt+1|t

∂υ
+

+Et−1

(
∂ ln ft+1

∂υt+1|t

∂ ln ft+1

∂λt+1|t

)
∂λt+1|t

∂ωϑ
+ Et−1

(
∂ ln ft+1

∂υt+1|t

∂ ln ft+1

∂ϑt+1|t

)
∂ϑt+1|t

∂ωϑ

]
= IλλE

[
∂λt+1|t

∂υ

∂λt+1|t

∂ωϑ

]
+ IλϑE

[
∂λt+1|t

∂υ

]
+ IλυE

[
∂λt+1|t

∂ωϑ

]
+ Iυϑ

Consider now the derivative of λt+1pt with respect to ωϑ

∂λt+1pt

∂ωϑ
= φλ

∂λtpt−1
∂ωϑ

+ κλ
∂uλt
∂ωϑ

+ κλ
∂uλt

∂λtpt−1

∂λtpt−1
∂ωϑ

= xt
∂λtpt−1
∂ωϑ

+ κλ
∂uλt
∂ϑ

, t = 1, ..., T,

Then, for the same reasons as in Equation (E.7) we have that

E

[
∂λt+1pt

∂ωϑ

]
=
−κλ
1− a

Iλϑ, (E.14)

Then, starting from the conditional expectation of
∂λt+1|t
∂υ

∂λt+1|t
∂ωϑ

Et−1

(
∂λt+1|t

∂υ

∂λt+1|t

∂ωϑ

)
= Et−1

(
x2t
) ∂λt|t−1

∂υ

∂λt|t−1

∂ωϑ
+ κλEt−1

(
xt
∂uλt
∂ϑ

)
∂λt|t−1

∂υ
+

+κλEt−1

(
xt
∂uλt
∂υ

)
∂λt|t−1

∂ωϑ
+ κ2λEt−1

(
∂uλt
∂υ

∂uλt
∂ϑ

)

Given Condition 2 of Harvey (2013, pg 35), Et−1

(
xt
∂uλt
∂ϑ

)
its independent from t. Thus

Et−1

(
xt
∂uλt
∂ϑ

)
= φλEt−1

(
∂uλt
∂ϑ

)
+ κλEt−1

(
∂uλt
∂λ

∂uλt
∂ϑ

)
= −φλIλυ + κλE

[
∂uλt
∂λ

∂uλt
∂ϑ

]

Taking now the unconditional expectations given |b| < 1 we have that

E

[
∂λt+1|t

∂υ

∂λt+1|t

∂ωϑ

]
=

κ2λ
(1− b)

(
E

[
∂uλt
∂υ

∂uλt
∂ϑ

]
− κ

(1− a)

(
IλυE

[
∂uλt
∂λ

∂uλt
∂ϑ

]
+ IλϑE

[
∂uλt
∂λ

∂uλt
∂υ

])
+

+
2φλ

(1− a)
IλυIλϑ

)

Therefore

Ψυωϑ =
κ2λ

(1− b)

[
bυϑ −

κλ
(1− a)

(Iλυbλϑ + Iλϑbλυ)

]
− 2κλ

(1− a)

(
1− φλκλ

(1− b)

)
IλυIλϑ + Iυυ (E.15)
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where bυϑ = E
[
∂uλt
∂υ

∂uλt
∂ϑ

]
and bλϑ = E

[
∂uλt
∂λ

∂uλt
∂ϑ

]
. Then

Ψψλωϑ = E

[
∂ ln ft(yt | Yt−1;θ)

∂ψλ

∂ ln ft(yt | Yt−1;θ)

∂ωϑ

]
= IλλE

[
∂λt+1|t

∂ψλ

∂λt+1|t

∂ωϑ

]
+ IλϑE

[
∂λt+1|t

∂ψλ

]

We can now focus on the expectations of the product of the partial derivatives of the dynamic parameters

of λt|t−1 and ωϑ.

E

[
∂λt+1|t

∂ψλ

∂λt+1|t

∂ωϑ

]
= E


∂λt+1|t
∂ωλ

∂λt+1|t
∂ωϑ

∂λt+1|t
∂φλ

∂λt+1|t
∂ωϑ

∂λt+1|t
∂κλ

∂λt+1|t
∂ωϑ

 , t = 0, 1, . . . , T.,

Starting form taking the conditional expectations we have

Et−1

(
∂λt+1|t

∂ωλ

∂λt+1|t

∂υ

)
= Et−1

(
x2t
) ∂λt|t−1

∂ωλ

∂λt|t−1

∂ωϑ
+ (1− φλ)κλEt−1

(
∂uλt
∂ωϑ

)
+

+ (1− φλ)Et−1 (xt)
∂λt|t−1

∂ωλ
+ κλEt−1 (xt)

∂uλt
∂ϑ

∂λt|t−1

∂ωλ

Given Condition 2 of Harvey (2013, pg 35), Et−1

(
xt
∂uλt
∂ϑ

)
its independent from t. Thus

Et−1

(
xt
∂uλt
∂ωϑ

)
= −φλIλϑ + κλE

[
∂uλt
∂λ

∂uλt
∂ϑ

]

Taking now the unconditional expectations given |b| < 1 we have that

E

[
∂λt+1|t

∂ωλ

∂λt+1|t

∂ωϑ

]
=

κλ
1− b

(
(1− φλ)E

[
∂uλt
∂ϑ

]
+ a

(1− φλ)

(1− a)
E

[
∂uλt
∂ϑ

]
+

(1− φλ)

(1− a)
E

[
xt
∂uλt
∂ϑ

])
=

κλ
1− b

(1− φλ)

(1− a)
(κλbλϑ − Iλυ)

Then

Et−1

(
∂λt+1|t

∂φλ

∂λt+1|t

∂ωϑ

)
= Et−1

(
x2t
) ∂λt|t−1

∂φλ

∂λt|t−1

∂ωϑ
+ κλEt−1

(
∂uλt
∂υ

)(
λt|t−1 − ωλ

)
+

+Et−1 (xt)
(
λt|t−1 − ωλ

) ∂λt|t−1
∂ωϑ

+ κλEt−1

(
xt
∂uλt
∂ϑ

)
∂λt|t−1

∂φλ
,

Taking first the conditional expectations at Ft−2 of the third term and then unconditional expectations given

that E
[
λt|t−1 − ωλ

]
= 0 we have that

E

[(
λt|t−1 − ωλ

) ∂λt|t−1
∂υ

]
=

κ2λ
1− aφλ

(
E

[
uλt−1

∂uλt−1
∂ϑ

]
− c

1− a
Iλϑ
)
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Then taking the unconditional expectation of Et−1

(
∂λt+1|t
∂φλ

∂λt+1|t
∂ωϑ

)
we have

E

[
∂λt+1|t

∂φλ

∂λt+1|t

∂ωϑ

]
=

a

(1− aφλ)

κ2λ
(1− b)

(
cϑ −

c

1− a
Iλυ
)

(E.16)

where cϑ = E
[
uλt

∂uλt
∂ϑ

]
. Then

Et−1

(
∂λt+1|t

∂κλ

∂λt+1|t

∂ωϑ

)
= Et−1

(
x2t
) ∂λt|t−1

∂κλ

∂λt|t−1

∂ωϑ
+ κλEt−1

(
uλt
∂uλt
∂ϑ

)
+

+Et−1
(
xtu

λ
t

) ∂λt|t−1
∂ωϑ

+ κλEt−1

(
xt
∂uλt
∂ϑ

)
∂λt|t−1

∂κλ

which after taking unconditional expectations becomes

E

[
∂λt+1|t

∂κλ

∂λt+1|t

∂ωϑ

]
=

κλ
1− b

(
cϑ −

c

1− a
Iλϑ
)

Therefore

Ψψλωϑ =
κλ

(1− b)
Iλλ


κλ

(1−φλ)
(1−a) bλϑ
aκλ

(1−aφλ)cϑ

cϑ

− Iλϑ


(1−φλ)
(1−a)

(
1− κλ

(1−b)Iλλ
)

acκ2
λ

(1−a)(1−b)(1−aφλ)Iλλ
cκλ

(1−a)(1−b)Iλλ


=

κλ
(1− b)

Iλλg (ϑ)− Iλϑd

Looking now at the expectation of product of the scores with respect to ωϑ.

Ψωϑωϑ = E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂ωϑ

∂ ln ft+1(yt+1 | Yt;θ)

∂ωϑ

]
= Iϑϑ + IλλE

[
∂λt+1|t

∂ωϑ

∂λt+1|t

∂ωϑ

]
+ 2IλϑE

[
∂λt+1|t

∂ωϑ

]

given that the conditional expectation of
∂λt+1|t
∂ωϑ

∂λt+1|t
∂ωϑ

can be expressed as follows

Et−1

(
∂λt+1|t

∂ωϑ

∂λt+1|t

∂ωϑ

)
= Et−1

(
x2t
) ∂λt|t−1

∂ωϑ

∂λt|t−1

∂ωϑ
+ κ2λEt−1

(
∂uλt
∂ϑ

∂uλt
∂ϑ

)
+ 2κλEt−1

(
xt
∂uλt
∂ϑ

)
∂λt|t−1

∂ωϑ

Noticing that

Et−1

(
xt
∂uλt
∂ϑ

)
= κλE

[
∂uλt
∂λ

∂uλt
∂ϑ

]
− φλIλϑ

we can then take the unconditional expectation of Et−1

[
∂λt+1|t
∂ϑ

∂λt+1|t
∂ϑ

]
to obtain

E

[
∂λt+1|t

∂ϑ

∂λt+1|t

∂ϑ

]
=

κλ
1− b

[
κ2λbϑϑ −

2κ2λ
(1− a)

(κλbλϑ − φλIλϑ) Iλϑ
]

(E.17)
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where bϑϑ = E
(
∂uλt
∂ϑ

)2
. Therefore

Ψωϑωϑ = Iϑϑ +
κ2λ

(1− b)
Iλλ

[
bϑϑ −

2κλ
(1− a)

Iλϑbλϑ
]
− κλ

[
2

(1− a)
+

φλκλ
(1− b)

Iλλ
]
I2λϑ

The second element of the block matrix in Equation (D.1) is

Ψκθ′ = E

[
∂ lnL

∂κϑ

∂ lnL

∂θ′

]
=
[
Ψκυ,Ψκψ′λ

,Ψκωϑ

]
its first component can be represented as

Ψκϑυ = E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂κϑ

∂ ln ft+1(yt+1 | Yt;θ)

∂υ

]
= E

[
Et−1

(
∂ ln ft+1

∂ϑt+1|t

∂ ln ft+1

∂λt+1|t

)
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂υ
+ Et−1

(
∂ ln ft+1

∂ϑt+1|t

∂ ln ft+1

∂υ

)
∂ϑt+1|t

∂κϑ

]
= IϑλE

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂υ

]
+ IϑυE

[
uϑt
]

where E
[
uϑt
]

= 0. Then starting from taking the conditional expectation of the product of the partial

derivatives of ϑt|t−1 with respect to all the individual κϑi, for 1 = 0, 1, ..., P − 1 we have first

Et−1

(
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂υ

)
= Et−1

(
xtu

ϑ
t

) ∂λt|t−1
∂υ

+ κλEt−1

(
uϑt
∂uλt
∂υ

)
= Et−1

((
φλ + κλ

∂uλt
∂λ

)
uϑt

)
∂λt|t−1

∂υ
+ κλEt−1

(
uϑt
∂uλt
∂υ

)
= κλ

(
E

[
uϑt
∂uλt
∂λ

]
∂λt|t−1

∂υ
+ E

[
uϑt
∂uλt
∂υ

])

Then taking unconditional expectations we have

E

[
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂υ

]
= κλ

(
hυ −

κλhλ
1− a

Iλυ
)
, (E.18)

where hλ = E
[
uϑt

∂uλt
∂λ

]
and hυ = E

[
uϑt

∂uλt
∂υ

]
. Then taking the conditional expectation with respect to

Ft−j−1 of the product of the partial derivative with respect to κϑj , by the tower property of conditional
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expectation we have

Et−j−1

(
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂υ

)
= Et−j−1

(
Et−1 (xt)u

ϑ
t−j

∂λt|t−1

∂υ
+ κλEt−1

(
∂uλt
∂υ

)
uϑt−j

)
= Et−j−1

(
auϑt−j

(
xt−1

∂λt−1|t−2

∂υ
+ κλ

∂uλt−1
∂υ

)
− κλIϑλuϑt−j

)
...

= ajEt−j−1
(
xt−ju

ϑ
t−j
) ∂λt−j|t−j−1

∂υ
+ ajκλEt−j−1

(
uϑt−j

∂uλt−j
∂υ

)
−

−κλIϑλEt−j−1
(
uϑt−j

) j−1∑
i=0

ai

= ajκλE

[
uϑt−j

∂uλt−j
∂λ

]
∂λt−j|t−j−1

∂υ
+ ajκλE

[
uϑt−j

∂uλt−j
∂υ

]

Taking the unconditional expectations we then get

E

[
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂υ

]
= ajκλ

(
hυ −

κλg

1− a
Iλυ
)

Therefore

Ψκϑυ = κλ

(
hυ −

κλg

1− a
Iλυ
)
Iϑλa†

where a† is the P × 1 vector defined as, a† =
(
1, a, a2, ..., aP−2, aP−1

)′
Then, given that Iυλ is independent

from λ we have that.

Ψψλκ
′
ϑ

= E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂κϑ

∂ ln ft+1(yt+1 | Yt;θ)

∂ψ′λ

]
= E

[
Et−1

(
∂ ln ft+1

∂ϑt+1|t

∂ ln ft+1

∂λt+1|t

)
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ψ′λ

]
= IϑλE

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ψ′λ

]

where

E

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ψ′λ

]
= E

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ωλ
,
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂φλ
,
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂κλ

]
, t = . . . , 0, 1, ...., T., (E.19)

Starting from the conditional expectations of the individual terms we have first,

Et−1

(
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂ωλ

)
= Et−1

(
uϑt

(
xt
∂λt|t−1

∂ωλ
+ 1− φλ

))
= Et−1

(
xtu

ϑ
t

) ∂λt|t−1
∂ωλ

+ (1− φλ)Et−1
(
uϑt
)

= κλE

[
uϑt
∂uλt
∂λ

]
∂λt|t−1

∂ωλ

47



which after taking the unconditional expectation becomes

E

[
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂ωλ

]
= κλhλ

1− φλ
1− a

Then taking the conditional expectation with respect to Ft−j−1 of the product of the derivative with respect

to κϑj , by the tower property of conditional expectation we get

Et−j−1

(
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂ωλ

)
= Et−j−1

(
Et−1 (xt)u

ϑ
t−j

∂λt|t−1

∂ωλ
+ (1− φλ)uϑt−j

)
= Et−j−1

(
auϑt−j

(
xt−1

∂λt−1|t−2

∂ωλ
+ (1− φλ)

)
+ (1− φλ)uϑt−j

)
...

= ajEt−j−1
(
xt−ju

ϑ
t−j
) ∂λt−j|t−j−1

∂ωλ
+ Et−j−1

(
uϑt−j

)
(1− φλ)

j∑
i=0

ai

= ajκλE

[
uϑt−j

∂uλt−j
∂λ

]
∂λt−j|t−j−1

∂ωλ

Which after taking the unconditional expectation becomes

E

[
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂ωλ

]
= ajκλhλ

1− φλ
1− a

Therefore

E

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ωλ

]
= κλhλ

1− φλ
1− a

a†

Then

Et−1

(
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂φλ

)
= Et−1

(
uϑt

(
xt
∂λt|t−1

∂φλ
+ λt|t−1 − ωλ

))
= Et−1

(
xtu

ϑ
t

) ∂λt|t−1
∂φλ

+
(
λt|t−1 − ωλ

)
Et−1

(
uϑt
)

= κλE

[
uϑt
∂uλt
∂λ

]
∂λt|t−1

∂φλ

Which after taking unconditional expectation becomes 0. By the tower property of the conditional expecta-

tion, the same result applies also to all the products of the partial derivatives with respect to the other κλj ,

therefore E
[
∂ϑt+1|t
∂κϑ

∂λt+1|t
∂φλ

]
= 0. Moreover

Et−1

(
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂κλ

)
= Et−1

(
uϑt

(
xt
∂λt|t−1

∂φλ
+ uλt

))
= Et−1

(
xtu

ϑ
t

) ∂λt|t−1
∂κλ

+ Et−1
(
uϑt u

λ
t

)
= κλE

[
uϑt
∂uλt
∂λ

]
∂λt|t−1

∂κλ
+ Iϑλ
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which after taking unconditional expectations becomes

E

[
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂κλ

]
= Iϑλ

Then taking the conditional expectation with respect to Ft−j−1 of the product of the derivative with respect

to κϑj , by the tower property of conditional expectation we get

Et−j−1

(
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂κλ

)
= Et−j−1

(
Et−1 (xt)u

ϑ
t−j

∂λt|t−1

∂κλ
+ Et−1

(
uλt
)
uϑt−j

)
= Et−j−1

(
auϑt−j

(
xt−1

∂λt−1|t−2

∂κλ
+ uλt−1

))
...

= ajEt−j−1
(
xt−ju

ϑ
t−j
) ∂λt−j|t−j−1

∂κλ
+ ajEt−j−1

(
uλt−ju

ϑ
t−j
)

= ajκλE

[
uϑt−j

∂uλt−j
∂λ

]
∂λt−j|t−j−1

∂κλ
+ ajIλϑ

which after taking unconditional expectations becomes

E

[
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂κλ

]
= ajIϑλ

Therefore

E

[
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂κλ

]
= Iϑλa†

The last component can be represented as

Ψκϑωϑ = E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂κϑ

∂ ln ft+1(yt+1 | Yt;θ)

∂ωϑ

]
= IϑλE

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ωϑ

]
+ IϑυE

[
∂ϑt+1|t

∂κϑ

∂ϑt+1|t

∂ωϑ

]
= IϑλE

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ωϑ

]
+ IϑϑE

[
uϑt
]

where E
[
uϑt
]

= 0. Then starting from taking the conditional expectation of the product of the partial

derivatives of ϑt|t−1 with respect to all the individual κϑi, for 1 = 0, 1, ..., P − 1 we have first

Et−1

(
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂ωϑ

)
= Et−1

(
xtu

ϑ
t

) ∂λt|t−1
∂ωϑ

+ κλEt−1

(
uϑt
∂uλt
∂ϑ

)
= κλ

(
E

[
uϑt
∂uλt
∂λ

]
∂λt|t−1

∂ωϑ
+ E

[
uϑt
∂uλt
∂ϑ

])

Then taking unconditional expectations we have

E

[
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂ωϑ

]
= κλ

(
hϑ −

κλhλ
1− a

Iλϑ
)
, (E.20)
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where hϑ = E
[
uϑt

∂uλt
∂ϑ

]
. Then taking the conditional expectation with respect to Ft−j−1 of the product of

the partial derivative with respect to κϑj , by the tower property of conditional expectation we have

Et−j−1

(
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂ωϑ

)
= Et−j−1

(
Et−1 (xt)u

ϑ
t−j

∂λt|t−1

∂ωϑ
+ κλEt−1

(
∂uλt
∂ϑ

)
uϑt−j

)
= Et−j−1

(
auϑt−j

(
xt−1

∂λt−1|t−2

∂ωϑ
+ κλ

∂uλt−1
∂ϑ

)
− κλIϑλuϑt−j

)
...

= ajEt−j−1
(
xt−ju

ϑ
t−j
) ∂λt−j|t−j−1

∂ωϑ
+ ajκλEt−j−1

(
uϑt−j

∂uλt−j
∂ϑ

)
−

−κλIϑλEt−j−1
(
uϑt−j

) j−1∑
i=0

ai

= ajκλE

[
uϑt−j

∂uλt−j
∂λ

]
∂λt−j|t−j−1

∂υ
+ ajκλE

[
uϑt−j

∂uλt−j
∂υ

]

Taking the unconditional expectations we then get

E

[
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂ωϑ

]
= ajκλ

(
hϑ −

κλhλ
1− a

Iλϑ
)

Then

Ψκϑυ = κλ

(
hϑ −

κλhλ
1− a

Iλϑ
)
Iϑλa†

Therefore

Ψκθ′ = Iλϑ
(

a†·
[
κλ

(
hυ −

κλhλ
1− a

Iλυ
)
, κλhλ

1− φλ
1− a

, 0, Iλϑ, κλ
(
hϑ −

κλhλ
1− a

Iλϑ
)])

= Iλϑa†g′

From these results, once evaluated the conditional expectations, the full form of the test which can be

expressed as

LMu(P ) = Qu(P ) +
1

T

I2λϑ
I2ϑϑ

∂ lnL

∂κϑ′
a†g′

(
Ψθθ −

I2λϑ
I2ϑϑ

ga†′a†g′
)−1

ga†′
∂ lnL

∂κϑ

= Qu(P ) +
1

T

I2λϑ
I2ϑϑ

g′

(
Ψθθ −

I2λϑ
I2ϑϑ

(
P−1∑
i=0

a2i

)
gg′

)−1
g

P−1∑
j=0

uϑt u
ϑ
t−1−ja

j

2

= Qu(P ) + TI2λϑg′
(

Ψθθ −
I2λϑ
I2ϑϑ

1− a2P

1− a2
gg′
)−1

g

 P∑
j=1

rϑu (j) aj−1

2

This methodology can be easily used in any DCS model to construct a test not only for testing the presence

of a time varying tail but more in general for testing the presence of a second time varying parameter once

a first on it has been already fitted.
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Appendix F. Expectations of scores for the Generalised t distribution

The expression for E
(
∂uλt
∂λ

)2
in b in Equation (E.3) can be obtained as

E

(
∂uλt
∂λ

)2

= (1 + η)
2
υ2E

[
b2t (1− bt)2

]
=

ηυ2 (1 + η) (1 + υ) (υ + η)

(η + 1 + 3υ) (η + 1 + 2υ) (η + 1 + υ)

The expression for E
[
uλt

∂uλt
∂λ

]
in c in Equation (E.4) can be obtained as

E

[
uλt
∂uλt
∂λ

]
= (1 + η) υ

(
E [bt (1− bt)]− (1 + η)E

[
b2t (1− bt)

])
=

υη

(η + 1 + υ)
− ηυ2 (1 + η) (1 + υ)

(η + 1 + 2υ) (η + 1 + υ)

=
ηυ2 (1− η)

(η + 1 + 2υ) (η + 1 + υ)

The expression for hλ in Equation (E.18) can be obtained as

E

[
uϑt
∂uλt
∂λ

]
= −ηs

(
η − η†

)
(1 + η)

(
τE [bt (1− bt)] + E [ln (1− bt) bt (1− bt)] +

(1 + η)

η
E
[
b2t (1− bt)

])
= −ηs

(
η − η†

){ (1 + υ) (1 + η)

(η + 1 + υ) (η + 1 + 2υ)
− η

(η + 1 + υ)

[
ψ

(
η + 1

υ

)
− ψ

(
η + 1

υ
+ 2

)
−

−
(
ψ
(η
υ

)
− ψ

(η
υ

+ 1
))]}

= −ηs
(
η − η†

) (1 + υ) (2 + 3υ + 6η) + η2 [2− υ (4 + υ + η)]

(1 + η + 2υ) (1 + η + υ)
2

(1 + η)

where τ = ψ
(
η+1
υ

)
− ψ

(
η
υ

)
− 1

η Noticing that when εt is distributed with Generalised t distribution with

shape parameters η and υ then ln |εt| = [ln bt − ln (1− bt) + ln η] /υ, where bt is distributed beta (1/υ, η/υ).
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The expression for hυ in Equation (E.18) can be obtained as

E

[
uϑt
∂uλt
∂υ

]
= ηs

(
η − η†

) (1 + η)

υ
(τE [ln (|εt|) bt (1− bt)] + E [ln (|εt|) ln (1− bt) bt (1− bt)] +

+
(1 + η)

η
E
[
ln (|εt|) b2t (1− bt)

])
=
ηs
(
η − η†

)
υ2

η

(η + 1 + υ)

{
τ

[
ln η + ψ

(
1

υ
+ 1

)
− ψ

(η
υ

+ 1
)]

+

+
(1 + υ) (1 + η)

η (η + 1 + υ)

[
ln η + ψ

(
1

υ
+ 1

)
− ψ

(η
υ

+ 1
)

+
υ

1 + υ

]
−

−
[
ln η + ψ

(
1

υ
+ 1

)
− ψ

(η
υ

+ 1
)
− ln η

] [
τ +

υ

(η + 1 + υ) + υ
1+η

+
1− υ
η

]
− ψ′

(η
υ

+ 1
)}

= ηs
(
η − η†

) [ η ln η

υ2 (η + 1 + υ)
τ+

+
(η + 1 + υ)

[
2η (1 + υ) + υ + υ2 (1 + η)− η3

]
− υ

[
υ2 (1 + η)− υη2 + 1

]
(1 + η) (η + 1 + υ)

2
(η + 1 + 2υ) υ2

τ+

+
(1 + η)

(η + 1 + υ) (η + 1 + 2υ) υ
+

1 + (η + υ) (η − υ) (1 + η)

υ2 (1 + η) (η + 1 + υ)
2 ln η

]

The expression for hϑ in Equation (E.20) can be obtained as

E

[
uϑt
∂uλt
∂ϑ

]
=
η2s
(
η − η†

)2
υ

(
τE [bt] + E [bt ln (1− bt)] +

(1 + η)

η
E
[
b2t
]
− (1 + η)

η
E [bt (1− bt) ln (1− bt)]

−τ 1 + η

η
E [bt (1− bt)]−

(1 + η)
2

η2
E
[
b2t (1− bt)

])

=
η2s
(
η − η†

)2
υ

{
η

(1 + η)

[
ψ
(η
υ

)
− ψ

(
η + 1

υ

)
+
υ

η

]
+

(1 + υ)

η (1 + η + υ)
−

− (1 + η) (1 + υ)

η (1 + η + υ) (1 + η + 2υ)
+

1

(1 + η)

[
ψ
(η
υ

)
− ψ

(
η + 1

υ

)
− υ

(1 + η)

]
−

− 1

(1 + η + υ)

[
ψ
(η
υ

)
− ψ

(
η + 1

υ

)
+
υ

η
− υ

(1 + η + υ)
− υ

(1 + η)

]
+

+ψ
(η
υ

)
− ψ

(
η + 1

υ

)
+
υ

η

}
= η2s

(
η − η†

)2{[
ψ
(η
υ

)
− ψ

(
η + 1

υ

)]
(1 + 2η + 2υ)

υ (1 + η + υ)
+

+
(1 + η + υ) (1 + η + 2υ) [(1 + 2υ) (1 + υ)− ηυ (2 + 2η + υ)] + (1 + η)

2
[η (1 + 2η + 3υ)− (1 + υ)]

η (1 + η)
2

(1 + η + υ)
2

(1 + η + 2υ)

}
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Then the expression for cυ in Equation (E.12) can be obtained as

E

[
uλt
∂uλt
∂υ

]
=
(
E
[
ln |εt| b2t (1− bt)

]
− E [ln |εt| bt (1− bt)]

)
(1 + η)

2

= (1 + η)

(
(1 + υ) η

υ (η + 1 + υ) (η + 1 + 2υ)

[
ln η + ψ

(
1

υ
+ 2

)
− ψ

(η
υ

+ 1
)]
−

− η

υ (η + 1 + υ)

[
ln η + ψ

(
1

υ
+ 2

)
− ψ

(η
υ

+ 1
)])

=
(1 + η) η

υ (η + 1 + υ) (η + 1 + 2υ)

[
(η + 2υ)

(
ψ
(η
υ

+ 1
)
− ln η

)
+ ψ

(
1

υ
+ 2

)
−

− (η + 1 + 2υ)ψ

(
1

υ
+ 1

)]

Then the expression for cϑ in Equation (E.16) can be obtained as

E

[
uλt
∂uλt
∂ϑ

]
= ηs

(
η − η†

)(
E [bt] +

(1 + η)

η
E [bt (1− bt)] + (1 + η)E

[
b2t
]
− (1 + η)

2

η
E
[
b2t (1− bt)

])

= ηs
(
η − η†

)( υ

η (1 + η + υ)
− 1

(1 + η)
+

(1 + υ)

(1 + η + υ)
− (1 + η) (1 + υ)

(1 + η + υ) (1 + η + υ)

)
= ηs

(
η − η†

) υ2 (2 + η + η2
)
− η (1 + η)

2
+ ηυ

η (1 + η) (1 + η + υ) (1 + η + 2υ)

The expression for bυυ in Equation (E.13) can be obtained as

E

(
∂uλt
∂υ

)2

= (1 + η)E
[
ln2 |εt| b2t (1− bt)2

]
=

1 + η

υ

(
ln2 ηE

[
b2t (1− bt)2

]
+ 2 ln ηE

[
ln (bt) b

2
t (1− bt)2

]
− 2 ln ηE

[
ln (1− bt) b2t (1− bt)2

]
+

+E
[
ln2 (bt) b

2
t (1− bt)2

]
− 2E

[
ln (bt) ln (1− bt) b2t (1− bt)2

]
+ E

[
ln2 (1− bt) b2t (1− bt)2

])
=

(1 + υ) η (η + υ)

υ (η + 1 + υ) (η + 1 + 2υ) (η + 1 + 3υ)

{[
ln η + ψ

(
1

υ
+ 2

)
− ψ

(η
υ

+ 2
)]2

+

+

[
ψ′
(

1

υ
+ 2

)
+ ψ′

(η
υ

+ 2
)]}

Then expression for bλυ in Equation (E.11) can be obtained as

E

[
∂uλt
∂λ

∂uλt
∂υ

]
= −E

[
ln |εt| b2t (1− bt)2

]
(1 + η)

2
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2

υ

(
ln ηE

[
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]
+ E

[
ln (bt) b

2
t (1− bt)2

]
− E

[
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])
= − (1 + υ) η (η + υ) (1 + η)

υ (η + 1 + υ) (η + 1 + 2υ) (η + 1 + 3υ)

[
ln η + ψ

(
1

υ
+ 2

)
− ψ

(η
υ

+ 2
)]

=
(1 + υ) η (η + υ) (1 + η)

υ (η + 1 + υ) (η + 1 + 2υ) (η + 1 + 3υ)

{
ψ
(η
υ

)
− ψ

(
1

υ

)
− ln η−

−υ [(υ + 1) (η + υ) + η] (η − 1)

(υ + 1) (η + υ) η

}
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Then expression for bλϑ in Equation (E.15) can be obtained as

E

[
∂uλt
∂λ

∂uλt
∂ϑ

]
= −ηs

(
η − η†

)
υ (1 + η)

(
E
[
b2t (1− bt)

]
− (1 + η)

η
E
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])
= −ηs

(
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) υ (1 + υ)
[
(1 + 4υ) (1 + η) + 6υ2

]
(1 + η + υ) (1 + η + 2υ) (1 + η + 3υ)

Then expression for bυϑ in Equation (E.15) can be obtained as

E

[
∂uλt
∂υ

∂uλt
∂ϑ

]
= −ηs

(
η − η†

)
(1 + η)

(
E
[
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]
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E
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= −ηs

(
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υ (1 + η + υ) (1 + η + 2υ)

{
(2η − 1) υ

(1 + η + 3υ)

[
ln η + ψ

(
1

υ

)
− ψ

(η
υ

)]
+
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[
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η (1 + η + 3υ)
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Then expression for bϑϑ in Equation (E.17) can be obtained as

E

(
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= η2s
(
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)2
E

[(
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η
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E
[
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]
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2

η2
E
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]
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E
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(
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)2 (1 + υ) [(1 + η + 2υ) (1 + η + 3υ)− (1 + η) (2 + η + 5υ)]
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Appendix G. Figures
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Figure G.14: Plot of the empirical Power of the LM test (Blue Line) and Q∗ test (Red Line) for different lags,
obtained from N = 1000 simulations of the Dynamic Scale-Tail model. The solid lines are for sample size T = 2000,
the dashed lines for T = 1000 and the dotted lines for T = 500.
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Figure G.15: Plot of the empirical Size of the LM test (Blue Line) and Q∗ test (Red Line) for different lags, obtained
from N = 1000 simulations of the Dynamic Scale-Tail model. The solid lines are for sample size T = 2000, the dashed
lines for T = 1000 and the dotted lines for T = 500.
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Figure G.16: Plot of the fitted inverse tail index parameters η̄t|t−1 and scale parameter ϕt|t−1 for the Dow Jones
dataset in case of Asymmetric Lower Tail Dynamics without Leverage(Top), Symmetric Tail Dynamics with leverage
(Mid) and Asymmetric Upper Tail Dynamics with Leverage (Bottom).
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Figure G.17: Plot of the ratios of the Expected Shortfall above the lower 10% (Top Left), 5% (Top Right), 1%
(Bottom Left) and 0.5% (Bottom Right) quantiles of the one-step-ahead forecasted conditional distribution of the
5y Italian CDS Rate Returns from fitting a symmetric DCS Beta-t-EGARCH model (Black Line), an asymmetric
DCS Beta-t-EGARCH model (Blue Line), an symmetric dynamic tail DCS EGARCH model (Green Line) over the
one-step-abead forecasted Expected Shortfall from a GARCH model.
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Figure G.18: Plot of the ratios of the Expected Shortfall below the upper 10% (Top Left), 5% (Top Right), 1%
(Bottom Left) and 0.5% (Bottom Right) quantiles of the one-step-ahead forecasted conditional distribution of the
5y Italian CDS Rate Returns from fitting a symmetric DCS Beta-t-EGARCH model (Black Line), an asymmetric
DCS Beta-t-EGARCH model (Blue Line), an symmetric dynamic tail DCS EGARCH model (Green Line) over the
one-step-abead forecasted Expected Shortfall from a GARCH model.
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Appendix H. Tables

ωϑ = log 2, φϑ = 0.99, κϑ = 0.25 ωϑ = log 8, φϑ = 0.99, κϑ = 0.01 ωϑ = log 15, φϑ = 0.99, κϑ = 0.005 ωϑ = log 30, φϑ = 0.98, κϑ = 0.005

T = 2000
Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail

ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P )

Q(1)
4,633 1,017 0,760

0,021
2,901 3,182 0,972

0,033
7,684 16,476 2,588

0,133
12,895 9,559 2,875

0,076(0,031) (0,313) (0,383) (0,089) (0,074) (0,324) (0,006) (0,000) (0,108) (0,000) (0,002) (0,090)

Q(5)
20,204 4,879 3,978

0,031
11,947 7,664 4,054

0,048
21,428 31,076 10,623

0,201
32,203 18,083 12,047

0,116
(0,462) (0,961) (0,979) (0,715) (0,672) (0,965) (0,175) (0,006) (0,763) (0,024) (0,089) (0,719)

Q(10)
38,057 9,924 8,122

0,027
22,697 12,907 7,896

0,061
29,593 42,149 18,570

0,241
43,636 23,515 22,063

0,143
(0,000) (0,447) (0,617) (0,012) (0,229) (0,639) (0,001) (0,000) (0,046) (0,000) (0,009) (0,015)

Q(15)
53,361 15,204 12,331

0,029
32,464 18,058 11,934

0,062
36,102 53,139 25,901

0,259
50,814 28,798 31,550

0,149
(0,000) (0,437) (0,654) (0,006) (0,260) (0,684) (0,002) (0,000) (0,039) (0,000) (0,017) (0,007)

Q(25)
78,734 25,757 20,858

0,028
48,790 28,550 20,291

0,07
48,775 75,217 40,019

0,269
63,117 39,127 48,588

0,149
(0,000) (0,421) (0,701) (0,003) (0,283) (0,731) (0,003) (0,000) (0,029) (0,000) (0,036) (0,003)

Q(35)
100,182 36,224 29,937

0,025
62,381 39,088 29,502

0,083
60,259 96,736 52,598

0,264
74,225 49,320 65,097

0,154
(0,000) (0,411) (0,711) (0,003) (0,291) (0,730) (0,005) (0,000) (0,028) (0,000) (0,055) (0,001)

Q(50)
128,365 51,868 43,896

0,033
81,934 55,127 42,569

0,081
77,820 129,303 70,945

0,274
89,406 64,611 87,234

0,156(0,000) (0,401) (0,716) (0,003) (0,287) (0,763) (0,007) (0,000) (0,027) (0,001) (0,080) (0,001)

η̂
1,903

-
8,795

-
20,756

-
59,181

-(0,286) (15,198) (33,762) (88,537)

exp(ω̂ϑ) -
2,048

-
8,828

-
19,858

-
37,361

(0,179) (0,355) (0,596) (0,638)

φ̂ϑ -
0,984

-
0,921

-
0,934

-
0,919

(0,030) (0,262) (0,216) (0,208)

κ̂ϑ -
0,025

-
0,011

-
0,003

-
0,003

(0,008) (0,006) (0,008) (0,006)

Table H.3: Estimation results and residual correlation of the fitted scores ût after fitting to the data a Beta-t-EGARCH and a Dynamic Scale and Tail DCS model on
1000 simulations of length T = 2000 generated by a conditional t distribution with dynamic scale and tail with different ωϑ assumptions.

ωϑ = log 2, φϑ = 0.99, κϑ = 0.25 ωϑ = log 8, φϑ = 0.99, κϑ = 0.01 ωϑ = log 15, φϑ = 0.99, κϑ = 0.005 ωϑ = log 30, φϑ = 0.98, κϑ = 0.005

T = 1000
Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail

ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P )

Q(1)
2,799 1,051 0,755

0,021
2,205 0,983 1,748

0,076
2,516 3,463 2,192

0,15
5,742 4,547 1,329

0,08(0,094) (0,305) (0,385) (0,138) (0,322) (0,186) (0,113) (0,063) (0,139) (0,017) (0,033) (0,249)

Q(5)
14,551 5,051 3,828

0,033
9,412 5,150 6,868

0,112
8,541 8,232 7,955

0,222
18,834 12,075 5,378

0,129
(0,731) (0,958) (0,980) (0,820) (0,964) (0,883) (0,774) (0,629) (0,822) (0,332) (0,474) (0,932)

Q(10)
27,307 10,259 8,099

0,038
18,034 10,445 12,705

0,14
14,743 13,141 13,693

0,241
27,362 20,471 9,725

0,141
(0,002) (0,418) (0,619) (0,054) (0,402) (0,241) (0,142) (0,216) (0,187) (0,002) (0,025) (0,465)

Q(15)
38,637 15,447 12,313

0,036
25,247 15,582 18,159

0,148
20,468 18,316 19,861

0,264
33,299 28,426 13,964

0,151
(0,001) (0,420) (0,655) (0,047) (0,410) (0,254) (0,155) (0,246) (0,177) (0,004) (0,019) (0,528)

Q(25)
58,617 25,626 21,154

0,037
39,688 25,834 28,506

0,162
31,982 28,596 30,165

0,266
43,907 44,002 22,605

0,171
(0,000) (0,428) (0,684) (0,031) (0,417) (0,285) (0,159) (0,281) (0,218) (0,011) (0,011) (0,601)

Q(35)
75,253 36,019 30,291

0,039
52,428 36,327 38,080

0,172
43,278 38,884 39,999

0,272
54,043 59,672 31,011

0,173
(0,000) (0,421) (0,695) (0,029) (0,407) (0,331) (0,159) (0,299) (0,258) (0,021) (0,006) (0,661)

Q(50)
97,089 51,714 43,777

0,05
69,943 51,655 52,148

0,159
59,242 54,354 54,245

0,254
68,553 83,185 43,558

0,172(0,000) (0,407) (0,720) (0,033) (0,409) (0,390) (0,174) (0,312) (0,316) (0,042) (0,002) (0,728)

η̂
1,938

-
10,323

-
35,463

-
94,880

-(0,495) (20,535) (70,487) (126,017)

exp(ω̂ϑ) -
2,120

-
10,421

-
24,091

-
43,993

(0,340) (0,654) (0,897) (0,855)

φ̂ϑ -
0,974

-
0,947

-
0,923

-
0,913

(0,077) (0,175) (0,232) (0,224)

κ̂ϑ -
0,024

-
0,007

-
0,000

-
0,002

(0,013) (0,014) (0,011) (0,008)

Table H.4: Estimation results and residual correlation of the fitted scores ût after fitting to the data a Beta-t-EGARCH and a Dynamic Scale and Tail DCS model on
1000 simulations of length T = 1000 generated by a conditional t distribution with dynamic scale and tail with different ωϑ assumptions.
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ωϑ = log 2, φϑ = 0.99, κϑ = 0.25 ωϑ = log 8, φϑ = 0.99, κϑ = 0.01 ωϑ = log 15, φϑ = 0.99, κϑ = 0.005 ωϑ = log 30, φϑ = 0.98, κϑ = 0.005

T = 500
Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail

ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P )

Q(1)
1,699 1,097 0,833

0,02
1,149 0,846 3,484

0,109
1,541 2,096 7,235

0,17
2,472 3,817 2,568

0,12(0,192) (0,295) (0,361) (0,284) (0,358) (0,062) (0,214) (0,148) (0,007) (0,116) (0,051) (0,109)

Q(5)
9,610 5,080 4,223

0,051
5,850 4,955 12,588

0,155
5,791 7,518 28,958

0,23
9,400 12,876 9,861

0,18
(0,889) (0,954) (0,975) (0,950) (0,974) (0,626) (0,908) (0,836) (0,204) (0,781) (0,576) (0,766)

Q(10)
18,330 10,190 8,492

0,061
12,315 10,393 21,432

0,179
10,786 14,327 49,986

0,241
15,491 24,211 17,460

0,18
(0,050) (0,424) (0,581) (0,265) (0,407) (0,018) (0,374) (0,159) (0,000) (0,115) (0,007) (0,065)

Q(15)
26,038 15,292 12,739

0,056
17,779 15,637 28,435

0,195
16,022 21,417 67,902

0,249
20,140 34,947 24,059

0,173
(0,038) (0,431) (0,622) (0,274) (0,407) (0,019) (0,381) (0,124) (0,000) (0,167) (0,003) (0,064)

Q(25)
40,342 25,508 21,927

0,067
28,976 26,176 40,786

0,193
26,207 34,763 95,830

0,241
30,107 55,668 37,284

0,185
(0,027) (0,434) (0,640) (0,265) (0,398) (0,024) (0,397) (0,093) (0,000) (0,220) (0,000) (0,054)

Q(35)
53,253 35,617 30,991

0,064
39,467 36,782 51,242

0,178
36,229 47,508 117,822

0,237
39,457 75,138 48,140

0,168
(0,025) (0,439) (0,662) (0,277) (0,386) (0,038) (0,411) (0,077) (0,000) (0,277) (0,000) (0,069)

Q(50)
70,635 51,067 44,514

0,066
54,049 52,250 65,948

0,169
50,419 65,881 144,210

0,225
53,312 101,293 63,758

0,164(0,029) (0,432) (0,692) (0,322) (0,387) (0,065) (0,457) (0,065) (0,000) (0,348) (0,000) (0,091)

η̂
2,077

-
25,047

-
63,319

-
124,676

-(0,746) (64,449) (106,959) (143,219)

exp(ω̂ϑ) -
2,275

-
14,335

-
31,182

-
49,877

(0,464) (1,027) (1,077) (0,944)

φ̂ϑ -
0,947

-
0,928

-
0,916

-
0,907

(0,161) (0,224) (0,258) (0,211)

κ̂ϑ -
0,018

-
0,000

-
-0,002

-
0,000

(0,031) (0,022) (0,016) (0,016)

Table H.5: Estimation results and residual correlation of the fitted scores ût after fitting to the data a Beta-t-EGARCH and a Dynamic Scale and Tail DCS model on
1000 simulations of length T = 500 generated by a conditional t distribution with dynamic scale and tail with different ωϑ assumptions.

Mean Static Tail Index Dynamic Tail Index Dynamic Scale Fit
µ η1 η η2 ωϑ1 φϑ1 κϑ1 ωϑ φϑ κϑ ωϑ2 φϑ2 κϑ2 ωλ φ1,λ κ1,λ κ∗1,λ φ2,λ κ2,λ κ∗2,λ Logl AIC BIC

Dow Jones

0,001 6,588 - - - -4,884 0,996 0,027 - 0,958 0,041 -
25.974,76 - 51.935,51 - 51.886,71(0,000) (0,072) - - - (0,081) (0,002) (0,009) - (0,015) (0,009) -

0,001 - 1,829 0,792 0,020 -4,900 0,987 0,062 - 0,257 -0,058 -
25.993,16 - 51.968,32 - 51.905,57

(0,000) - (0,071) (0,087) (0,005) (0,056) (0,003) (0,006) - (0,158) (0,013) -

0,001 5,460 9,625 - - - - - - -4,869 0,996 0,028 - 0,958 0,040 -
25.987,40 - 51.958,79 - 51.903,02

(0,000) (0,076) (0,129) - - - - - - (0,082) (0,002) (0,009) - (0,015) (0,009) -
0,001 - 8,718 1,651 0,643 0,022 - - - -4,884 0,986 0,068 - 0,182 -0,048 -

25.996,86 - 51.973,71 - 51.904,00
(0,000) - (0,114) (0,073) (0,206) (0,008) - - - (0,056) (0,003) (0,006) - (0,185) (0,013) -

0,000 6,900 - - - -4,919 0,984 0,061 0,024 0,656 -0,049 0,057
26.094,38 - 52.170,76 - 52.108,02

(0,000) (0,072) - - - (0,050) (0,003) (0,007) (0,004) (0,073) (0,014) (0,007)
0,000 - 2,000 0,789 0,012 -4,919 0,984 0,061 0,024 0,656 -0,049 0,057

26.103,70 - 52.185,41 - 52.108,72
(0,000) - (0,076) (0,166) (0,004) (0,050) (0,003) (0,007) (0,004) (0,072) (0,014) (0,007)

0,001 5,741 10,379 - - - - - - -4,889 0,985 0,062 0,023 0,690 -0,041 0,053
26.106,53 - 52.193,06 - 52.123,34

(0,000) (0,138) (0,076) - - - - - - (0,053) (0,003) (0,007) (0,005) (0,081) (0,016) (0,006)
0,001 5,644 - - - - 2,304 0,932 0,007 -4,893 0,986 0,058 0,024 0,718 -0,041 0,058

26.115,57 - 52.207,13 - 52.123,47
(0,000) (0,074) - - - - (0,136) (0,066) (0,003) (0,053) (0,004) (0,008) (0,006) (0,097) (0,020) (0,007)

Table H.6: Parameter Estimates for the Beta-t-EGARCH Model and dynamic Scale-Tail model without and with leverage term.
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Res Corr Scale Tail Q∗u(P ) Test
Sym Asym η1 η η2

Q(1)
8,548 8,500 4,950 14,302 0,727

(0,003) (0,004) (0,026) (0,000) (0,394)

Q(5)
11,240 11,366 33,731 47,049 3,492
(0,047) (0,045) (0,000) (0,000) (0,625)

Q(10)
20,647 20,418 43,360 58,038 7,150
(0,024) (0,026) (0,000) (0,000) (0,711)

Q(15)
24,014 24,240 45,655 61,841 11,375
(0,065) (0,061) (0,000) (0,000) (0,726)

Q(25)
35,783 35,313 51,467 70,176 14,336
(0,075) (0,083) (0,001) (0,000) (0,956)

Q(35)
53,120 51,983 61,708 82,916 20,714
(0,025) (0,032) (0,004) (0,000) (0,974)

Q(50)
66,658 64,915 70,645 94,310 31,717
(0,058) (0,076) (0,029) (0,000) (0,980)

Table H.7: Box-Ljung test on fitted scores with respect to
scale ûλt and Simple LM Dynamic Tail test after fitting the
Beta-t-EGARCH model without leverage. Symmetric and
Asymmetric case.

Res Corr Scale Res Corr Tail
Sym Asym η1 η η2

Q(1)
0,328 0,051 0,880 0,772 -

(0,567) (0,822) (0,348) (0,380) -

Q(5)
1,542 1,329 5,104 3,270 -

(0,908) (0,932) (0,403) (0,658) -

Q(10)
7,732 6,090 7,744 9,250 -

(0,655) (0,808) (0,654) (0,509) -

Q(15)
11,935 11,594 10,043 12,869 -
(0,684) (0,709) (0,817) (0,612) -

Q(25)
27,855 27,761 17,909 26,831 -
(0,315) (0,319) (0,846) (0,364) -

Q(35)
42,576 42,450 27,576 41,042 -
(0,177) (0,181) (0,810) (0,223) -

Q(50)
55,279 54,382 37,417 53,944 -
(0,282) (0,311) (0,906) (0,326) -

Table H.8: Box-Ljung test on fitted scores with re-
spect to scale ûλt and with respect to the dynamic
tail index parameter ûϑt after fitting the dynamic
Scale-Tail DCS Model without leverage. Symmet-
ric and Asymmetric case.

Res Corr Scale Tail Q∗u(P ) Test
Sym Asym η1 η η2

Q(1)
2,010 2,630 0,161 7,415 6,853

(0,156) (0,105) (0,688) (0,006) (0,009)

Q(5)
4,261 5,007 7,494 17,652 39,557

(0,512) (0,415) (0,186) (0,003) (0,000)

Q(10)
8,648 10,279 15,332 24,899 44,202

(0,566) (0,416) (0,120) (0,006) (0,000)

Q(15)
13,580 15,123 17,811 30,765 47,115
(0,558) (0,443) (0,273) (0,009) (0,000)

Q(25)
28,016 29,337 24,349 40,167 53,347
(0,307) (0,250) (0,499) (0,028) (0,001)

Q(35)
44,776 45,720 33,544 52,373 58,706
(0,125) (0,106) (0,538) (0,030) (0,007)

Q(50)
60,699 60,564 45,243 68,478 65,242
(0,143) (0,146) (0,664) (0,042) (0,073)

Table H.9: Box-Ljung test on fitted scores with respect
to scale ûλt and Simple LM Dynamic Tail test after fitting
the Beta-t-EGARCH model with leverage. Symmetric and
Asymmetric case.

Res Corr Scale Res Corr Tail
Sym Asym η1 η η2

Q(1)
5,759 4,091 - 0,010 0,462

(0,016) (0,043) - (0,920) (0,497)

Q(5)
6,354 6,850 - 0,545 0,705

(0,273) (0,232) - (0,990) (0,983)

Q(10)
10,741 12,297 - 6,685 1,836
(0,378) (0,266) - (0,755) (0,997)

Q(15)
15,373 17,416 - 11,352 2,462
(0,425) (0,295) - (0,727) (1,000)

Q(25)
28,406 31,453 - 24,444 3,295
(0,290) (0,174) - (0,494) (1,000)

Q(35)
44,028 46,797 - 34,282 8,213
(0,141) (0,088) - (0,503) (1,000)

Q(50)
59,805 61,075 - 45,775 12,197
(0,161) (0,136) - (0,644) (1,000)

Table H.10: Box-Ljung test on fitted scores with
respect to scale ûλt and with respect to the dynamic
tail index parameter ûϑt after fitting the dynamic
Scale-Tail DCS Model with leverage. Symmetric
and Asymmetric case.
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Mean Shape Dynamic Tail Index Dynamic Scale Fit
µ η1 η η2 ωϑ1 φϑ1 κϑ1 ωϑ φϑ κ1ϑ κ2ϑ ωϑ2 φϑ2 κϑ2 ωλ φλ κλ Logl AIC BIC

5Y CDS Italy

-0,001 2,491 - - - - -3,862 0,957 0,105
6.102,32 - 12.194,64 - 12.164,58

(0,000) (0,063) - - - - (0,067) (0,011) (0,013)
0,000 - 0,693 1,000 -0,034 0,056 -3,872 0,974 0,116

6.155,18 - 12.294,36 - 12.246,27
(0,000) - (0,990) (0,001) (0,014) (0,013) (0,083) (0,007) (0,019)
-0,001 2,687 2,330 - - - - - - -3,856 0,957 0,104

6.103,80 - 12.195,60 - 12.159,54
(0,000) (0,078) (0,072) - - - - - - (0,067) (0,011) (0,013)
-0,001 - - 0,933 0,997 0,014 0,693 0,998 0,014 -3,853 0,969 0,100

6.129,02 - 12.238,05 - 12.177,94
(0,000) - - (0,235) (0,002) (0,004) (0,415) (0,002) (0,003) (0,090) (0,009) (0,013)

Table H.11: Parameter Estimates for the Beta-t-EGARCH Model and dynamic Scale-Tail model

Res Corr Scale Tail Q∗u(P ) Test
Sym Asym η1 η η2

Q(1)
7,914 8,204 6,692 38,982 7,613

(0,005) (0,004) (0,010) (0,000) (0,006)

Q(5)
15,141 15,234 11,898 53,813 20,050
(0,010) (0,009) (0,036) (0,000) (0,001)

Q(10)
16,703 16,780 16,693 57,667 27,637
(0,081) (0,079) (0,081) (0,000) (0,002)

Q(15)
19,310 19,196 25,445 63,566 27,723
(0,200) (0,205) (0,044) (0,000) (0,023)

Q(25)
24,325 24,389 62,917 83,861 47,803
(0,501) (0,497) (0,000) (0,000) (0,004)

Q(35)
41,287 40,884 66,260 101,423 63,028
(0,215) (0,228) (0,001) (0,000) (0,003)

Q(50)
60,458 60,138 74,762 111,105 72,515
(0,148) (0,154) (0,013) (0,000) (0,020)

Table H.12: Box-Ljung test on fitted scores with respect to scale ûλt and
Simple LM Dynamic Tail test after fitting the Beta-t-EGARCH model. Sym-
metric and Asymmetric case.

Res Corr Scale Res Corr Tail
Sym Asym η1 η η2

Q(1)
0,671 5,731 1,808 0,180 2,656

(0,413) (0,017) (0,179) (0,671) (0,103)

Q(5)
5,531 13,130 3,653 1,589 4,317

(0,355) (0,022) (0,600) (0,903) (0,505)

Q(10)
7,421 14,335 5,535 6,390 8,827

(0,685) (0,158) (0,853) (0,782) (0,549)

Q(15)
10,433 18,315 10,005 11,071 11,896
(0,792) (0,246) (0,819) (0,748) (0,687)

Q(25)
18,073 24,792 22,558 19,460 16,635
(0,839) (0,474) (0,603) (0,775) (0,895)

Q(35)
30,594 39,927 25,979 27,431 24,432
(0,681) (0,260) (0,866) (0,815) (0,909)

Q(50)
45,491 58,419 34,687 39,593 33,604
(0,655) (0,194) (0,951) (0,854) (0,964)

Table H.13: Box-Ljung test on fitted scores with respect to scale ûλt and with
respect to the dynamic tail index parameter ûϑt after fitting the dynamic
Scale-Tail DCS Model. Symmetric and Asymmetric case.
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GARCH DCS Sym Tails DCS Asym Tails

p 0.15 0.1 0.05 0.01 0.15 0.1 0.05 0.01 0.15 0.1 0.05 0.01

Fixed Tail

Independence
L&U 6.031 8.550∗ 6.913 3.314 2.910 7.844 2.747 7.139 2.137 8.988 4.109 7.980∗

L 0.015 0.542 0.763 0.250 1.888 0.247 1.701 0.016 0.180 0.573 1.701 0.016
U 2.320 2.262 3.331∗∗ 0.306 1.060 3.018∗ 0.162 0.116 1.361 4.191∗∗ 0.642 0.055

Coverage
L&U 77.468∗∗∗ 38.194∗∗∗ 19.410∗∗∗ 1.290 1.467 2.621 5.234∗ 5.728∗ 5.180∗ 6.207∗∗ 7.137∗∗ 7.311∗∗

L 41.078∗∗∗ 25.146∗∗∗ 15.209∗∗∗ 0.372 0.067 1.589 5.100∗∗ 5.460∗∗ 0.068 1.931 5.100∗∗ 5.460∗∗

U 25.516∗∗∗ 9.800∗∗∗ 3.519∗ 0.904 1.464 0.768 0.066 0.249 4.773∗∗ 3.658∗ 1.740 1.802

Backtesting
L −5.185∗∗∗ −4.126∗∗∗ −1.910∗ 1.380 −2.271∗∗ −2.505∗∗ −2.378∗∗ -1.262 −2.160∗∗ −2.357∗∗ −2.194∗∗ -1.212
U −1.945∗ 0.988 9.426∗∗∗ 109.527∗∗∗ -1.037 -0.841 -1.082 -0.688 -1.072 -0.772 -0.752 0.996

Pred Lik 1,573.58 1,709.59 1,709.12

Dynamic Tail

Independence
L&U 4.353 1.524 3.215 0.278 3.860 6.912 3.194 4.993

L 0.839 0.230 0.104 0.016 1.864 0.003 2.485 0.200
U 0.620 0.276 0.131 0.200 1.804 4.004 0.264 0.055

Coverage
L&U 0.708 0.420 1.763 5.516∗ 2.772 2.621 2.189 1.862

L 0.593 0.060 1.740 5.460∗∗ 0.321 0.768 1.740 0.066
U 0.220 0.389 0.007 0.066 2.690 1.589 0.365 1.802

Backtesting
L -0.136 -1.082 -1.489 -1.336 -0.436 -0.871 -0.650 -0.092
U -0.398 -0.338 0.512 -0.058 -0.887 -0.378 -0.165 0.868

Pred Lik 1,686.39 1,709.24

Table H.14: Results of the unconditional coverage and independence likelihood ratio tests of Christoffersen (1998) for the upper tail, lower tails one-step-ahead quantiles
and joint interval violations, as well as the results for the unconditional backtest of Du and Escanciano (2017) to evaluate the upper and lower one-step-ahead ES
accuracy. ∗, ∗∗, ∗ ∗ ∗ define rejections with confidence levels of 0.1, 0.05, and 0.01 respectively.
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